4.7 Article

Spatial heterogeneity of the relation between resting-state connectivity and blood flow: An important consideration for pharmacological studies

期刊

HUMAN BRAIN MAPPING
卷 35, 期 3, 页码 929-942

出版社

WILEY
DOI: 10.1002/hbm.22224

关键词

resting state; pharmacological fMRI; functional brain connectivity; cerebral blood flow; cerebral perfusion; drug research; arterial spin labeling; resting-state networks

资金

  1. Netherlands Organization for Scientific Research (NWO, VIDI) [91786368]

向作者/读者索取更多资源

Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations-mostly in the blood oxygen level dependent (BOLD) signal-across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)-representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)-in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs. Hum Brain Mapp 35:929-942, 2014. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据