4.7 Article

An Ex Vivo Imaging Pipeline for Producing High-Quality and High-Resolution Diffusion-Weighted Imaging Datasets

期刊

HUMAN BRAIN MAPPING
卷 32, 期 4, 页码 544-563

出版社

WILEY-BLACKWELL
DOI: 10.1002/hbm.21043

关键词

cortical layers; crossing fibers; diffusion MRI; diffusion tensor imaging; hippocampus; tractography; validation

资金

  1. EPSRC [EP/G007748/1]
  2. Lundbeck Foundation
  3. Gangsted Foundation
  4. Danish Centre for Scientific Computing [HDW-1104-08]
  5. Velux Foundation
  6. EPSRC [EP/H046410/1, EP/G007748/1] Funding Source: UKRI
  7. Engineering and Physical Sciences Research Council [EP/G007748/1, EP/H046410/1] Funding Source: researchfish
  8. Lundbeck Foundation [R17-2007-1690] Funding Source: researchfish

向作者/读者索取更多资源

Diffusion tensor (DT) imaging and related multifiber reconstruction algorithms allow the study of in vivo microstructure and, by means of tractography, structural connectivity. Although reconstruction algorithms are promising imaging tools, high-quality diffusion-weighted imaging (DWI) datasets for verification and validation of postprocessing and analysis methods are lacking. Clinical in vivo DWI is limited by, for example, physiological noise and low signal-to-noise ratio. Here, we performed a series of DWI measurements on postmortem pig brains, which resemble the human brain in neuroanatomical complexity, to establish an ex vivo imaging pipeline for generating high-quality DWI datasets. Perfusion fixation ensured that tissue characteristics were comparable to in vivo conditions. There were three main results: (i) heat conduction and unstable tissue mechanics accounted for time-varying artefacts in the DWI dataset, which were present for up to 15 h after positioning brain tissue in the scanner; (ii) using fitted DT, q-ball, and persistent angular structure magnetic resonance imaging algorithms, any b-value between similar to 2,000 and similar to 8,000 s/mm(2), with an optimal value around 4,000 s/mm(2), allowed for consistent reconstruction of fiber directions; (iii) diffusivity measures in the postmortem brain tissue were stable over a 3-year period. On the basis of these results, we established an optimized ex vivo pipeline for high-quality and high-resolution DWI. The pipeline produces DWI data sets with a high level of tissue structure detail showing for example two parallel horizontal rims in the cerebral cortex and multiple rims in the hippocampus. We conclude that high-quality ex vivo DWI can be used to validate fiber reconstruction algorithms and to complement histological studies. Hum Brain Mapp 32:544-563, 2011. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据