4.7 Article

Enhanced Neural Activity in Frontal and Cerebellar Circuits After Cognitive Training in Children with Attention-Deficit/Hyperactivity Disorder

期刊

HUMAN BRAIN MAPPING
卷 31, 期 12, 页码 1942-1950

出版社

WILEY
DOI: 10.1002/hbm.20988

关键词

attention deficit hyperactivity disorder; training; cerebellum; frontal lobe; fMRI; attention; inhibition

资金

  1. Centro para el Desarrollo Tecnologico Industrial [IDI-2005-0390]
  2. Spanish Government (MEC)

向作者/读者索取更多资源

The brain is a plastic entity that can undergo dynamic changes throughout the lifespan as a result of training. Attention-deficit/hyperactivity disorder (ADHD) is commonly treated with psychostimulant medication, and the prevalence of ADHD medication prescription is a topic of heated scientific debate. In addition, cognitive training is frequently provided to patients with ADHD. Although psychostimulant effects have been thoroughly investigated, no previous studies have assessed the neural effects of cognitive training in ADHD. We applied fMRI-paradigms of response inhibition and selective attention to chart the effects of a 10-day cognitive training program in 19 unmedicated ADHD children receiving either cognitive or control training. The two resulting longitudinal datasets were analyzed using whole-brain random-effects general linear models. Although we observed no increases of activity in the control group, both fMRI-datasets revealed enhanced activity after cognitive training in neural structures closely related to ADHD pathophysiology. On the inhibition paradigm, our results indicated increases in orbitofrontal, superior frontal, middle temporal, and inferior frontal cortex. The attentional task was characterized by increased activity in the cerebellum, which correlated with improvement on in-scanner measures of attention. Our findings provide preliminary evidence that cognitive training enhances activity in neural structures typically affected by the disorder. Similar results have been obtained following methylphenidate administration, suggesting that training of cognitive functions may mimic the effects of psychostimulant medication on the brain. These findings postulate a neural account for the potency of cognitive training in ADHD, and hold clinical implications, supporting the inclusion of training programs in standard ADHD-treatment. Hum Brain Mapp 31:1942-1950, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据