4.3 Article

Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells

期刊

HUMAN & EXPERIMENTAL TOXICOLOGY
卷 28, 期 8, 页码 493-503

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0960327109107002

关键词

Apoptosis; cell cycle; caspase-3; mitochondrial; quercetin; MDA-MB-231 cells

资金

  1. Changhua Christian Hospital, Changhua, Taiwan [CCH-IRP11]

向作者/读者索取更多资源

There has been considerable evidence recently demonstrating the anti-tumour effects of flavonols. Quercetin, an ubiquitous bioactive flavonol, inhibits cells proliferation, induces cell cycle arrest and apoptosis in different cancer cell types. The precise molecular mechanism of quercetin-induced apoptosis in human breast cancer cells is unclear. The purpose of this study was to investigate effects of quercetin on cell viability and to determine its underlying mechanism in human breast cancer MDA-MB-231 cells. Quercetin decreased the percentage of viable cells in a dose- and time-dependent manner, which was associated with cell cycle arrest and apoptosis. Quercetin did not increase reactive oxygen species generation but increased cytosolic Ca2+ levels and reduced the mitochondrial membrane potential (Delta Psi(m)). Quercetin treatment promoted activation of caspase-3, -8 and -9 in MDA-MB-231 cells. Caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin increased abundance of the pro-apoptotic protein Bax and decreased the levels of anti-apoptotic protein Bcl-2. Confocal laser microscope examination indicated that quercetin promoted apoptosis-inducing factor (AIF) release from mitochondria and stimulated translocation to the nucleus. Taken together, these findings suggest that quercetin results in human breast cancer MDA-MB-231 cell death through mitochondrial-and caspase-3-dependent pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据