3.8 Article

Mechanisms of Impaired Growth: Effect of Steroids on Bone and Cartilage

期刊

HORMONE RESEARCH
卷 72, 期 -, 页码 30-35

出版社

KARGER
DOI: 10.1159/000229761

关键词

Glucocorticoids; Osteoblasts; Osteoclasts; Chondrocytes; Growth

向作者/读者索取更多资源

Background: Long-term treatment with high-dose glucocorticoids (GCs) has profound effects on bone metabolism and linear growth. Bone metabolism is a balance between bone resorption by osteoclasts and new bone formation by osteoblasts. Systemically, GC treatment reduces circulating levels of estrogen and modestly increases parathyroid hormone levels. At the local level, GCs decrease insulin-like growth factor I (IGF-I) production, induce IGF-I resistance and increase nuclear factor kappa B ligand production by osteoblasts. These alterations inhibit new bone formation and stimulate bone resorption, with a net loss of bone over time. Clinically, this results in decreased bone mineral density, osteoporosis and increased risk for fracture. Local effects of GCs at the growth plate include reduction of IGF-I production, inducing IGF-I resistance and reducing production of C-type natriuretic peptide, which results in a reduction of chondrocyte proliferation, matrix synthesis and hypertrophy. These reductions in chondrocyte function result in decreased linear growth. Conclusions: The effects of GCs on bone metabolism and linear growth are sensitive and specific and represent an evolutionary adaptation to redirect resources during times of physiologic stress. Since many of these effects result from alterations in IGF-I production, growth hormone therapy is a potential approach to ameliorate these problems. Copyright (C) 2009 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据