4.6 Article

Temperature-Dependent Infrared and Calorimetric Studies on Arsenicals Adsorption from Solution to Hematite Nanoparticles

期刊

LANGMUIR
卷 31, 期 9, 页码 2749-2760

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la504581p

关键词

-

资金

  1. Laurier
  2. NSERC
  3. Ontario's Ministry of Research and Innovation
  4. U.S. Department of Energy (DOE) Office of Science Early Career Research Program [211267]

向作者/读者索取更多资源

To address the lack of systematic and surface sensitive studies on the adsorption energetics of arsenic compounds on metal (oxyhydr)oxides, we conducted temperature-dependent ATR-FTIR studies for the adsorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid on hematite nanoparticles at pH 7. Spectra were collected as a function of concentration and temperature in the range 5-50 degrees C (278-323 K). Adsorption isotherms were constructed from spectral features assigned to surface arsenic. Values of Keq, adsorption enthalpy, and entropy were extracted from fitting the Langmuir model to the data and from custom-built triple-layer surface complexation models derived from our understanding of the adsorption mechanism of each arsenical. These spectroscopic and modeling results were complemented with flow-through calorimetric measurements of molar heats of adsorption. Endothermic adsorption processes were predicted from the application of mathematical models with a net positive change in adsorption entropy. However, experimentally measured heats of adsorption were exothermic for all three arsenicals studied herein, with arsenate releasing 1.6-1.9 times more heat than methylated arsenicals. These results highlight the role of hydration thermodynamics on the adsorption of arsenicals, and are consistent with the spectral interpretation of type of surface complexes each arsenical form in that arsenate is mostly dominated by bidentate, MMA by a mixture of mono- and bidentate, and DMA by mostly outer sphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据