4.6 Article

Force Balance Model for Bubble Rise, Impact, and Bounce from Solid Surfaces

期刊

LANGMUIR
卷 31, 期 24, 页码 6763-6772

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b01451

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

A force balance model for the rise and impact of air bubbles in a liquid against rigid horizontal surfaces that takes into account effects of buoyancy and hydrodynamic drag forces, bubble deformation, inertia of the fluid via an added mass force, and a film force between the bubble and the rigid surface is proposed. Numerical solution of the governing equations for the position and velocity of the center of mass of the bubbles is compared against experimental data taken with ultraclean water. The boundary condition at the air water interface is taken to be stress free, which is consistent for bubbles in clean water systems. Features that are compared include bubble terminal velocity, bubbles accelerating from rest to terminal speed, and bubbles impacting and bouncing off different solid surfaces for bubbles that have already or are yet to attain terminal speed. Excellent agreement between theory and experiments indicates that the forces included in the model constitute the main physical ingredients to describe the bouncing phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据