4.6 Article

Plasmon Enhancement Effect in Au Gold Nanorods@Cu2O Core Shell Nanostructures and Their Use in Probing Defect States

期刊

LANGMUIR
卷 31, 期 4, 页码 1537-1546

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la503988e

关键词

-

资金

  1. National Key Basic Research Program of China [2012CB934001, 2011CB932802]
  2. National Natural Science Foundation of China [91127013, 21173056, 11304054]

向作者/读者索取更多资源

Au@Cu2O core-shell nanostructures are fabricated to have a plasmon enhancement effect using Au nanorods (Au NRs) as a plasmon-tailorable core. By varying the concentration of Au NRs, we can tune the shell thickness in the range of 10-25 nm. The shell is composed of Cu2O nanocrystallites. Because of the thin shells, the extinction spectra at wavelength >500 nm are dominated by the Au core. However, the large dielectric constant of the shell causes an obvious red shift of the surface plasmon resonance (SPR) band of the Au nanorod. Besides, transverse octupolar SPR appears as a result of the anisotropy of the core and the high dielectric constant of the shell. The anisotropic geometry of the Au NR is found to support the octupolar resonances at smaller sizes than for their spherical counterpart. Theoretical simulations indicate that the transverse SPR bands are divided into two resonances, which are dipolar- and octupolar-dominant, respectively. The Cu2O shell degrades via a defect-mediated oxidative pathway, which is aggravated upon longitudinal SPR excitation. The SPR-mediated local field enhancement and resonance energy transfer are found to enhance the excitation of the defect states in the shell, thus providing a simple yet selective probing strategy for defect states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据