4.6 Article

Fast Liquid Transfer between Surfaces: Breakup of Stretched Liquid Bridges

期刊

LANGMUIR
卷 31, 期 42, 页码 11470-11476

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b03292

关键词

-

资金

  1. Xerox Foundation
  2. Canada Research Chair Program
  3. Alberta Innovates Technology Futures

向作者/读者索取更多资源

In this work, a systematic experimental study was performed to understand the fast liquid transfer process between two surfaces. According to the value of the Reynolds number (Re), the fast transfer is divided into two different scenarios, one with negligible inertia effects (Re << 1) and the other with significant inertia effects (Re > 1). For Re << 1, the influences of the capillary number (Ca) and the dimensionless minimum separation (H-min* = H-min/V-1/3, where H-min is the minimum separation between two surfaces and Vis the volume of liquid) on the transfer ratio (alpha, the volume of liquid transferred to the acceptor surface over the total liquid volume) are discussed. On the basis of the roles of each physical parameter, an empirical equation is presented to predict the transfer ratio, alpha = f(Ca). This equation involves two coefficients which are affected only by the surface contact angles and Hmin* but not by the liquid viscosity or surface tension. When Re > 1, it is shown for the first time that the transfer ratio does not converge to 0.5 with the increase in the stretching speed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据