4.4 Article

MiR-200b is involved in Tgf-beta signaling to regulate mammalian palate development

期刊

HISTOCHEMISTRY AND CELL BIOLOGY
卷 137, 期 1, 页码 67-78

出版社

SPRINGER
DOI: 10.1007/s00418-011-0876-1

关键词

Palatogenesis; MiR-200b; Smad2; Snail; Apoptosis; Cell proliferation

资金

  1. National Research Foundation of Korea (NRF)
  2. Korea government (MEST) [2011-0015661]

向作者/读者索取更多资源

Various cellular and molecular events are involved in palatogenesis, including apoptosis, epithelialmesenchymal transition (EMT), cell proliferation, and cell migration. Smad2 and Snail, which are well-known key mediators of the transforming growth factor beta (Tgf-beta) pathway, play a crucial role in the regulation of palate development. Regulatory effects of microRNA 200b (miR-200b) on Smad2 and Snail in palatogenesis have not yet been elucidated. The aim of this study is to determine the relationship between palate development regulators miR-200b and Tgf-beta-mediated genes. Expression of miR-200b, E-cadherin, Smad2, and Snail was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium (MEE) and palatal mesenchyme. After the contact of palatal shelves, miR-200b was no longer expressed in the mesenchyme around the fusion region. The binding activity of miR-200b to both Smad2 and Snail was examined using a luciferase assay. MiR-200b directly targeted Smad2 and Snail at both cellular and molecular levels. The function of miR-200b was determined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of these Tgf-beta-mediated regulators and changes of apoptosis and cell proliferation in the palatal fusion region. These results suggest that miR-200b plays a crucial role in regulating the Smad2, Snail, and in apoptosis during palatogenesis by acting as a direct non-coding, influencing factor. Furthermore, the molecular interactions between miR-200b and Tgf-beta signaling are important for proper palatogenesis and especially for palate fusion. Elucidating the mechanism of palatogenesis may aid the design of effective gene-based therapies for the treatment of congenital cleft palate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据