4.3 Article

Synaptic Potentiation Induces Increased Glial Coverage of Excitatory Synapses in CA1 Hippocampus

期刊

HIPPOCAMPUS
卷 19, 期 8, 页码 753-762

出版社

WILEY
DOI: 10.1002/hipo.20551

关键词

electron microscopy; astrocyte; organotypic hippocampal culture; LTP; oxygen/glucose deprivation

资金

  1. Swiss National Science Foundation [3100-105721]
  2. IBRO [PAIBA-106333]

向作者/读者索取更多资源

Patterns of activity that induce synaptic plasticity at excitatory synapses, such as long-term potentiation, result in structural remodeling of the postsynaptic spine, comprising an enlargement of the spine head and reorganization of the postsynaptic density (PSD). Furthermore, spine synapses represent complex functional units in which interaction between the presynaptic varicosity and the postsynaptic spine is also modulated by surrounding astroglial processes. To investigate how activity patterns could affect the morphological interplay between these three partners, we used an electron microscopic (EM) approach and 3D reconstructions of excitatory synapses to study the activity-related morphological changes underlying induction of synaptic potentiation by theta burst stimulation or brief oxygen/glucose deprivation episodes in hippocampal organotypic slice cultures. EM analyses demonstrated that the typical glia-synapse organization described in in vivo rat hippocampus is perfectly preserved and comparable in organotypic slice cultures. Three-dimensional reconstructions of synapses, classified as simple or complex depending upon PSD organization, showed significant changes following induction of synaptic potentiation using both protocols. The spine head volume and the area of the PSD significantly enlarged 30 min and 1 h after stimulation, particularly in large synapses with complex PSD, an effect that was associated with a concomitant enlargement of presynaptic terminals. Furthermore, synaptic activity induced a pronounced increase of the glial coverage of both pre- and postsynaptic structures, these changes being prevented by application of the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid. These data reveal dynamic, activity-dependent interactions between glial processes and pre- and postsynaptic partners and suggest that glia can participate in activity-induced structural synapse remodeling. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据