4.3 Review

A Metric for Space

期刊

HIPPOCAMPUS
卷 18, 期 12, 页码 1142-1156

出版社

WILEY
DOI: 10.1002/hipo.20483

关键词

hippocampus; entorhinal cortex (EC); grid cells; place cells; spatial representation; navigation

向作者/读者索取更多资源

Not all areas of neuronal systems investigation have matured to the stage where computation can be understood at the microcircuit level. In mammals, insights into cortical circuit functions have been obtained for the early stages of sensory systems, where signals can be followed through networks of increasing complexity from the receptors to the primary sensory cortices. These studies have suggested how neurons and neuronal networks extract features from the external world, but how the brain generates its own codes, in the higher-order nonsensory parts of the cortex, has remained deeply mysterious. In this terra incognita, a path was opened by the discovery of grid cells, place-modulated entorhinal neurons whose firing locations define a periodic triangular or hexagonal array covering the entirety of the animal's available environment. This array of firing is maintained in spite of ongoing changes in the animal's speed and direction, suggesting that grid cells are part of the brain's metric for representation of space. Because the crystal-like structure of the firing fields is created within the nervous system itself, grid cells may provide scientists with direct access to some of the most basic operational principles of cortical circuits. (C) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据