4.6 Article

A Closer Look into the Traditional Purification Process of CdSe Semiconductor Quantum Dots

期刊

LANGMUIR
卷 31, 期 49, 页码 13433-13440

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b03584

关键词

-

资金

  1. National Science Foundation [DMR-1206940]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1206940] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper describes how the postprocessing procedure for wurtzite CdSe quantum dots (QDs) 4.8 and 6.7 nm in diameter is affected by both the choice of nonsolvent and the number of processing steps. Using a host of analytical techniques (ultraviolet visible, photoluminescence, nuclear magnetic, X-ray photoelectron, and infrared spectroscopy, as well as thermogravimetric analysis), we find that control over the ligand type and surface density can be achieved simply by the number of washing steps used during the postprocessing procedure. Using multiple washing steps we can achieve colloidally stable solutions of QDs with organic mass fractions as low as 13% by mass. For CdSe QDs passivated with trioctylphosphine oxide (TOPO) and stearic acid (SA), essentially no TOPO is bound to the particle surface after three or four washing steps, with a plateau in the amount of SA being removed. The results can be explained using the L- and X-type ligand classification system for QDs, with L-type ligands (TOPO) removed in the early processing steps but the removal of X-type (SA) ligand stalling at a large number of washing steps due to charging of the QDs. Importantly, very little change is observed in the photoluminescence (PL) properties, suggesting that the choice of nonsolvent during postprocessing will allow the production of QD materials with very low organic content by mass but with good PL quantum yields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据