4.6 Article

EFFECTS OF THINNING AND INDUCED DROUGHT ON MICROBIOLOGICAL SOIL PROPERTIES AND PLANT SPECIES DIVERSITY AT DRY AND SEMIARID LOCATIONS

期刊

LAND DEGRADATION & DEVELOPMENT
卷 27, 期 4, 页码 1151-1162

出版社

WILEY
DOI: 10.1002/ldr.2361

关键词

soil properties; plant biodiversity; thinning; microbiological activity; climate change

资金

  1. CONSOLIDER-INGENIO MONTES of the Spanish Ministry of Science and Innovation [CSD 2008-00040]

向作者/读者索取更多资源

Soil properties and plant species diversity are key elements of forest ecosystem functioning and are affected directly by climate change. The aim of this work was to study plant species diversity, physicochemical and soil microbiological properties and enzymatic activities after induced drought conditions and thinning at semiarid (Calasparra) and dry (Yeste) Pinus halepensis Mill. forest stands. Different plots affected by a wildfire event 17 years ago, with or without thinning 5 years after the fire event, were selected. A 15% rainfall reduction over 3 years was also carried out. Physicochemical soil properties (soil texture, pH, carbonates, total organic carbon, electrical conductivity and total N and P), soil enzymes (urease, phosphatase, beta-glucosidase and dehydrogenase activities), carbon mineralisation and soil microbial biomass carbon were analysed in the selected study areas. Shannon and Simpson indices were calculated, and total plant cover and plant species richness were evaluated. The results showed no differences in microbiological soil properties and soil enzyme activities when comparing thinned and unthinned plots; conversely, plant species diversity indices were affected by thinning. Induced drought affected only total cover and species richness, which were lower at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, as opposed to the plant species diversity indices. We conclude that soil properties recover in the midterm after thinning activities, and they resist against a 15% rainfall reduction under potential climate change conditions remaining steady after induced drought. The plant community presents different responses to drought depending on the experimental site. Copyright (C) 2015 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据