4.8 Article

Complementary Vascular and Matrix Regulatory Pathways Underlie the Beneficial Mechanism of Action of Sorafenib in Liver Fibrosis

期刊

HEPATOLOGY
卷 54, 期 2, 页码 573-585

出版社

WILEY-BLACKWELL
DOI: 10.1002/hep.24427

关键词

-

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK59615-06, P30DK084567]
  2. National Institute of Biomedical Imaging and Bioengineering [EB000305]

向作者/读者索取更多资源

Paracrine signaling between hepatic stellate cells (HSCs) and liver endothelial cells (LECs) modulates fibrogenesis, angiogenesis, and portal hypertension. However, mechanisms regulating these processes are not fully defined. Sorafenib is a receptor tyrosine kinase inhibitor that blocks growth factor signaling in tumor cells but also displays important and not yet fully characterized effects on liver nonparenchymal cells including HSCs and LECs. The aim of this study was to test the hypothesis that sorafenib influences paracrine signaling between HSCs and LECs and thereby regulates matrix and vascular changes associated with chronic liver injury. Complementary magnetic resonance elastography, micro-computed tomography, and histochemical analyses indicate that sorafenib attenuates the changes in both matrix and vascular compartments that occur in response to bile duct ligation-induced liver injury in rats. Cell biology studies demonstrate that sorafenib markedly reduces cell-cell apposition and junctional complexes, thus reducing the proximity typically observed between these sinusoidal barrier cells. At the molecular level, sorafenib down-regulates angiopoietin-1 and fibronectin, both released by HSCs in a manner dependent on the transcription factor Kruppel-like factor 6, suggesting that this pathway underlies both matrix and vascular changes associated with chronic liver disease. Conclusion: Collectively, the results of this study demonstrate that sorafenib inhibits both matrix restructuring and vascular remodeling that accompany chronic liver diseases and characterize cell and molecular mechanisms underlying this effect. These data may help to refine future therapies for advanced gastrointestinal and liver diseases characterized by abundant fibrosis and neovascularization. (HEPATOLOGY 2011;54:573-585)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据