4.8 Article

c-Jun Mediates Hepatitis C Virus Hepatocarcinogenesis Through Signal Transducer and Activator of Transcription 3 and Nitric Oxide-Dependent Impairment of Oxidative DNA Repair

期刊

HEPATOLOGY
卷 52, 期 2, 页码 480-492

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/hep.23697

关键词

-

资金

  1. NCI NIH HHS [P01 CA123328, R01 CA108302, P01CA123328, CA108302] Funding Source: Medline
  2. NIAAA NIH HHS [1R01 AA018857-01, P50 AA011999, R01 AA018857-02, P50AA11999, R01 AA018857] Funding Source: Medline
  3. NIAID NIH HHS [N01AI40038] Funding Source: Medline

向作者/读者索取更多资源

Hepatocellular carcinoma (HCC) occurs in a significant number of patients with hepatitis C virus (HCV) infection. HCV causes double-strand DNA breaks and enhances the mutation frequency of proto-oncogenes and tumor suppressors. However, the underlying mechanisms for these oncogenic events are still elusive. Here, we studied the role of c-Jun, signal transducer and activator of transcription 3 (STAT3), and nitric oxide (NO) in spontaneous and diethylnitrosamine (DEN)-initiated and/or phenobarbital (Pb)-promoted HCC development using HCV core transgenic (Tg) mice. The viral core protein induces hepatocarcinogenesis induction as a tumor initiator under promotion by Pb treatment alone. Conditional knockout of c-jun and stat3 in hepatocytes achieves a nearly complete, additive effect on prevention of core-induced spontaneous HCC or core-enhanced HCC incidence caused by DEN/Pb. Core protein induces hepatocyte proliferation and the expression of inflammatory cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1) and inducible NO synthase (iNOS); the former is dependent on c-Jun and STAT3, and the latter on c-Jun. Oxidative DNA damage repair activity is impaired by the HCV core protein due to reduced DNA glycosylase activity for the excision of 8-oxo-2'-deoxyguanosine. This impairment is abrogated by iNOS inhibition or c-Jun deficiency, but aggravated by the NO donor or iNOS-inducing cytokines. The core protein also suppresses apoptosis mediated by Fas ligand because of c-Jun dependent Fas down-regulation. Conclusion: These results indicate that the HCV core protein potentiates chemically induced HCC through c-Jun and STAT3 activation, which in turn, enhances cell proliferation, suppresses apoptosis, and impairs oxidative DNA damage repair, leading to hepatocellular transformation. (HEPATOLOGY 2010;52:480-492)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据