4.8 Article

Aggravation by Prostaglandin E2 of Interleukin-6-Dependent Insulin Resistance in Hepatocytes

期刊

HEPATOLOGY
卷 50, 期 3, 页码 781-790

出版社

WILEY-BLACKWELL
DOI: 10.1002/hep.23064

关键词

-

资金

  1. DFG [PU10013-1, NE792/1-1]

向作者/读者索取更多资源

Hepatic insulin resistance is a major contributor to fasting hyperglycemia in patients with metabolic syndrome and type 2 diabetes. Circumstantial evidence suggests that cyclooxygenase products in addition to cytokines might contribute to insulin resistance. However, direct evidence for a role of prostaglandins in the development of hepatic insulin resistance is lacking. Therefore, the impact of prostaglandin E-2 (PGE(2)) alone and in combination with interleukin-6 (IL-6) on insulin signaling was studied in primary hepatocyte cultures. Rat hepatocytes were incubated with IL-6 and/or PGE(2) and subsequently with insulin. Glycogen synthesis was monitored by radiochemical analysis; the activation state of proteins of the insulin receptor signal chain was analyzed by western blot with phosphospecific antibodies. In hepatocytes, insulin-stimulated glycogen synthesis and insulin-dependent phosphorylation of Akt-kinase were attenuated synergistically by prior incubation with IL-6 and/or PGE(2) while insulin receptor autophosphorylation was barely affected. IL-6 but not PGE(2) induced suppressors of cytokine signaling (SOCS3). PGE(2) but not IL-6 activated extracellular signal-regulated kinase 1/2 (ERK1/2) persistently. Inhibition of ERK1/2 activation by PD98059 abolished the PGE(2)-dependent but not the IL-6-dependent attenuation of insulin signaling. In HepG2 cells expressing a recombinant EP3-receptor, PGE(2) pre-incubation activated ERK1/2, caused a serine phosphorylation of insulin receptor substrate 1 (IRS1), and reduced the insulin-dependent Akt-phosphorylation. Conclusion: PGE(2) might contribute to hepatic insulin resistance via an EP3-receptor-dependent ERK1/2 activation resulting in a serine phosphorylation of insulin receptor substrate, thereby preventing an insulin-dependent activation of Akt and glycogen synthesis. Since different molecular mechanisms appear to be employed, PGE(2) may synergize with IL-6, which interrupted the insulin receptor signal chain, principally by an induction of SOCS, namely SOCS3. (HEPATOLOGY 2009;50: 781-790.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据