4.8 Article

Impaired Liver Regeneration in Mice Lacking Glycine N-Methyltransferase

期刊

HEPATOLOGY
卷 50, 期 2, 页码 443-452

出版社

WILEY
DOI: 10.1002/hep.23033

关键词

-

资金

  1. National Institutes of Health (NIH) [AT-1576, DK15289, SAF2008-04800, HEPADIP-EULSHM-CT-205, ETORTEK-2008]
  2. Fundacion La Caixa
  3. Instituto de Salud Carlos III

向作者/读者索取更多资源

Hepatic S-adenosylmethionine (SAMe) is maintained constant by the action of methionine adenosyltransferase I/III (MATI/III), which converts methionine into SAMe and glycine N-methyltransferase (GNMT), which eliminates excess SAMe to avoid aberrant methylation reactions. During liver regeneration after partial hepatectomy (PH) MATI/III activity is inhibited leading to a decrease in SAMe. This injury-related reduction in SAMe promotes hepatocyte proliferation because SAMe inhibits hepatocyte DNA synthesis. In MATI/III-deficient mice, hepatic SAMe is reduced, resulting in uncontrolled hepatocyte growth and impaired liver regeneration. These observations suggest that a reduction in SAMe is crucial for successful liver regeneration. In support of this hypothesis we report that liver regeneration is impaired in GNMT knockout (GNMT-KO) mice. Liver SAMe is 50-fold higher in GNMT-KO mice than in control animals and is maintained constant following PH. Mortality after PH was higher in GNMT-KO mice than in control animals. In GNMT-KO mice, nuclear factor kappa B (NF kappa B), signal transducer and activator of transcription-3 (STAT3), inducible nitric oxide synthase (iNOS), cyclin D1, cyclin A, and poly (ADP-ribose) polymerase were activated at baseline. PH in GNMT-KO mice was followed by the inactivation of STAT3 phosphorylation and iNOS expression. NF kappa B, cyclin D1 and cyclin A were not further activated after PH. The LKB1/AMP-activated protein kinase/endothehal nitric oxide synthase cascade was inhibited, and cytoplasmic HuR translocation was blocked despite preserved induction of DNA synthesis in GNMT-KO after PH. Furthermore, a previously unexpected relationship between AMPK phosphorylation and NF kappa B activation was uncovered. Conclusion: These results indicate that multiple signaling pathways are impaired during the liver regenerative response in GNMT-KO mice, suggesting that GNMT plays a critical role during liver regeneration, promoting hepatocyte viability and normal proliferation. (HEPATOLOGY 2009;50:443-452.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据