4.8 Article

Missense Mutations and Single Nucleotide Polymorphisms in ABCB11 Impair Bile Salt Export Pump Processing and Function or Disrupt Pre-Messenger RNA Splicing

期刊

HEPATOLOGY
卷 49, 期 2, 页码 553-567

出版社

WILEY
DOI: 10.1002/hep.22683

关键词

-

资金

  1. Guy and St Thomas' Charity, London, UK
  2. Associazione Ricercaperil Canto
  3. Medical Research Council [MC_U120088463] Funding Source: researchfish
  4. MRC [MC_U120088463] Funding Source: UKRI

向作者/读者索取更多资源

The gene encoding the human bile salt export pump (BSEP), ABCB11, is mutated in several forms of intrahepatic cholestasis. Here we classified the majority (63) of known ABCB11 missense mutations and 21 single-nucleotide polymorphisms (SNPs) to determine whether they caused abnormal ABCB11 pre-messenger RNA splicing, abnormal processing of BSEP protein, or alterations in BSEP protein function. Using an in vitro minigene system to analyze splicing events, we found reduced wild-type splicing for 20 mutations/SNPs, with normal mRNA levels reduced to 5% or less in eight cases. The common ABCB11 missense mutation encoding D482G enhanced aberrant splicing, whereas the common SNP A1028A promoted exon skipping. Addition of exogenous splicing factors modulated several splicing defects. Of the mutants expressed in vitro in CHO-K1 cells, most appeared to be retained in the endoplasmic reticulum and degraded. A minority had BSEP levels similar to wild-type. The SNP variant A444 had reduced levels of protein compared with V444. Treatment with glycerol and incubation at reduced temperature overcame processing defects for several mutants, including E297G. Taurocholate transport by two assessed mutants, N490D and A570T, was reduced compared with wild-type. Conclusion: This work is a comprehensive analysis of 80% of ABCB11 Missense mutations and single-nudeotide polymorphisms at pre-mRNA splicing and protein processing/functional levels. We show that aberrant pre-mRNA splicing occurs in a considerable number of cases, leading to reduced levels of normal mRNA. Thus, primary defects at either the protein or the mRNA level (or both) contribute significantly to BSEP deficiency. These results will help to develop mutation-specific therapies for children and adults suffering from intrahepatic cholestasis due to BSEP deficiency. (HEPATOLOGY 2009;49:553-567.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据