4.3 Article

Thermocouple Data in the Inverse Heat Conduction Problem

期刊

HEAT TRANSFER ENGINEERING
卷 32, 期 9, 页码 811-825

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01457632.2011.525468

关键词

-

向作者/读者索取更多资源

The presence of thermocouples inside a heat-conducting body will distort the temperature field in the body and may lead to significant bias in the temperature measurement. If temperature histories obtained from thermocouples are used in the inverse heat conduction problem (IHCP), errors are propagated into the IHCP results. The bias in the thermocouple measurements can be removed through use of appropriate detailed thermocouple models to account for the dynamics of the sensor measurement. The results of these models can be used to generate correction kernels to eliminate bias in the thermocouple reading, or can be applied as sensitivity coefficients in the IHCP directly. Three-dimensional and axisymmetric models are compared and contrasted and a simple sensitivity study is conducted to evaluate the significance of thermal property selection on the temperature correction and subsequent heat flux estimation. In this paper, a high-fidelity thermocouple model is used to account for thermocouple bias in an experiment to measure heat fluxes from solidifying aluminum to a sand mold. Correction kernels are obtained that are used to demonstrate the magnitude of the temperature measurement bias created by the thermocouples. The corrected temperatures are used in the IHCP to compute the surface heat flux. A comparison to IHCP results using uncorrected temperatures shows the impact of the bias correction on the computed heat fluxes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据