4.4 Article

Application of maximum entropy method for droplet size distribution prediction using instability analysis of liquid sheet

期刊

HEAT AND MASS TRANSFER
卷 47, 期 12, 页码 1591-1600

出版社

SPRINGER
DOI: 10.1007/s00231-011-0797-5

关键词

-

资金

  1. Tarbiat Modares University
  2. Chemical and Material department in UAHuntsville

向作者/读者索取更多资源

This paper describes the implementation of the instability analysis of wave growth on liquid jet surface, and maximum entropy principle (MEP) for prediction of droplet diameter distribution in primary breakup region. The early stage of the primary breakup, which contains the growth of wave on liquid-gas interface, is deterministic; whereas the droplet formation stage at the end of primary breakup is random and stochastic. The stage of droplet formation after the liquid bulk breakup can be modeled by statistical means based on the maximum entropy principle. The MEP provides a formulation that predicts the atomization process while satisfying constraint equations based on conservations of mass, momentum and energy. The deterministic aspect considers the instability of wave motion on jet surface before the liquid bulk breakup using the linear instability analysis, which provides information of the maximum growth rate and corresponding wavelength of instabilities in breakup zone. The two sub-models are coupled together using momentum source term and mean diameter of droplets. This model is also capable of considering drag force on droplets through gas-liquid interaction. The predicted results compared favorably with the experimentally measured droplet size distributions for hollow-cone sprays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据