4.4 Article

Myofibroblasts in diseased hearts: New players in cardiac arrhythmias?

期刊

HEART RHYTHM
卷 6, 期 6, 页码 848-856

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.hrthm.2009.02.038

关键词

Myofibroblast; Fibroblast; Arrhythmia; Ectopic activity; Slow conduction; Structural remodeling; Fibrosis; Infarction; Connexin; Cell therapy

向作者/读者索取更多资源

Cardiac pathologies leading to the development of organ fibrosis typically are associated with the appearance of interstitial myofibroblasts. This cell type plays a central role in excessive extracellular matrix deposition, thereby contributing to arrhythmogenic stow and discontinuous conduction by causing disorganization of the three-dimensional network of electrically coupled cardiomyocytes. Besides this involvement in structural remodeling, myofibroblasts recently have been discovered in-vitro to promote arrhythmogenesis by direct modification of cardiomyocyte electrophysiology following establishment of heterocellular electrical coupling. In particular, myofibroblasts were found to rescue impulse conduction between disjoined cardiac tissues by acting as passive electrical conduits for excitatory current flow. Although, in principle, such recovery of blocked conduction might be beneficial, propagation across myofibroblast conduits is Substantially delayed, thereby promoting arrhythmogenic stow and discontinuous conduction. Second, moderately polarized myofibroblasts were found to induce cell density-dependent depolarization of cardiomyocytes, which causes arrhythmogenic stow conduction due to the reduction of fast inward currents. Finally, critical depolarization of cardiomyocytes by myofibroblasts was discovered to lead to the appearance of ectopic activity in a model of the infarct border zone. These findings obtained in vitro suggest that electrotonic interactions following gap junctional coupling between myofibroblasts and cardiomyocytes in structurally remodeled fibrotic hearts might directly initiate the main mechanisms underlying arrhythmogenesis, that is, abnormal automaticity and abnormal impulse conduction. If, in the future, similar arrhythmogenic mechanisms can be shown to be operational in intact hearts, myofibroblasts might emerge as a novel noncardiomyocyte target for antiarrhythmic therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据