4.7 Article

Rapid and continuous magnetic separation in droplet microfluidic devices

期刊

LAB ON A CHIP
卷 15, 期 3, 页码 908-919

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4lc01327a

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  2. Center for Biotechnology
  3. Empire State Development
  4. Division of Science, Technology and Innovation (NYSTAR)
  5. Center for Advanced Technology
  6. NIH-NHGRI [1 R21 HG006206-01]
  7. NIH-NCI [R01 CA181595]
  8. Simons Foundation

向作者/读者索取更多资源

We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据