4.5 Article

Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat

期刊

HEADACHE
卷 48, 期 8, 页码 1202-1213

出版社

WILEY
DOI: 10.1111/j.1526-4610.2008.01205.x

关键词

K-ATP channel; dural and pial artery; glibenclamide; calcitonin gene-related peptide; glyceryltrinitrate; transcranial electrical stimulation

资金

  1. The Else Torps Legat
  2. The Novo Nordisk Foundation
  3. The Lundbeck Foundation Center for Neurovascular Signaling

向作者/读者索取更多资源

Objective.-The objective of this study was to explore the role of K-ATP channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. Background.-Dilatation of cerebral and dural arteries causes a throbbing, migraine-like pain. Both CGRP and NO are potent vasodilators that can induce migraine. Their antagonists are effective in the treatment of migraine attacks. KATP channel openers cause headache in the majority of healthy subjects suggesting a role for K-ATP channels in migraine pathogenesis. We hypothesized that vasodilatation induced by CGRP and the No donor glyceryltrinitrate (GTN) is mediated via K-ATP channels. Methods.-We examined the effects of the K-ATP channel inhibitor glibenclamide on dural and pial vasodilatation induced by CGRP, NO, and endogenously released CGRP by TES. A rat genuine closed cranial window model was used for in vivo studies and myograph baths for studying the effect in vitro. In the closed cranial window model the diameter of dural vessels was measured directly in anesthetized animals to investigate the vascular effects of infused CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood How by Laser Doppler flowmetry (LCBFFlux) were measured. Results.-CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro. In anesthetized rats glibenclamide significantly, attenuated CGRP induced dural and TES induced dural/pial artery dilatation (P = .001; P = .001;P = .005), but bad no effect on dural/pial vasodilatation induced by GTN. In vitro glibenclamide failed to significantly inhibit CGRP- and GTN-induced vasodilatation. Conclusions.-These results show that a K-ATP channel blocker in vivo but not in vitro inhibits CGRP, but not GTN-induced dilatation of dural and pial arteries, a mechanism thought to be important in migraine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据