4.6 Article

Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis

期刊

HARMFUL ALGAE
卷 31, 期 -, 页码 41-53

出版社

ELSEVIER
DOI: 10.1016/j.hal.2013.08.005

关键词

Aging; Programmed cell death; Caspase

资金

  1. NOAA Oceans and Human Health Pre-Doctoral Fellowship awarded
  2. NOAA Marine Biotoxins Program

向作者/读者索取更多资源

The observation of caspase-like activity during cell death has provided a new framework for understanding the evolutionary and ecological contexts of programmed cell death in phytoplankton. However, additional roles for this caspase-like activity, the enzymes responsible, and the targets of this enzyme activity in phytoplankton remain largely undefined. In the present study, the role of caspase-like activity in aging and ROS-mediated cell death were investigated and death programs both dependent on and independent of caspase-like activity were observed in the toxic dinoflagellate, Karenia brevis. The dual use of in situ caspase 3/7 and TUNEL staining identified previously undescribed death-associated morphotypes in K. brevis. In silica motif analysis identified several enzymes with predicted caspase-like activity in the K. brevis transcriptome, although bona fide caspases are absent. Lastly, computational prediction of downstream caspase substrates, using sequence context and predicted secondary structure, identified proteins involved in a wide range of biological processes including regulation of protein turnover, cell cycle progression, lipid metabolism, coenzyme metabolism, apoptotic and autophagic death. To confirm the computational predictions, a short peptide was designed around the predicated caspase cleavage site in a predicted novel K. brevis caspase 3/7-like target, Sadenosylmethionine synthetase (KbAdoMetS). Cleavage of the peptide substrate with recombinant caspase 3 enzyme was determined by MALDI-TOF MS, confirming that KbAdoMetS is indeed a bona fide caspase substrate. These data identify the involvement of caspase-like activity in both aging and cell death in K. brevis and identify novel executioner enzymes and downstream targets that may be important for bloom termination. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据