

RIPHAH **INTERNATIONAL UNIVERISTY Department Of MATHEMATICS**

Convolutional Neural Network

Facial Emotion Recognition

Rabia Riaz, Fiza Akram, Umm-e- Farwa, Kiran Iqbal Email: rabiariaz.rr786@gmail.com, fizaakram87@gmail.com, ummefarwa0283@gmail.com, iqbalkiran043@gmail.com Supervised by: M. Saqib Khan

Department of Mathematics, Riphah International University Islamabad (Lahore Campus)

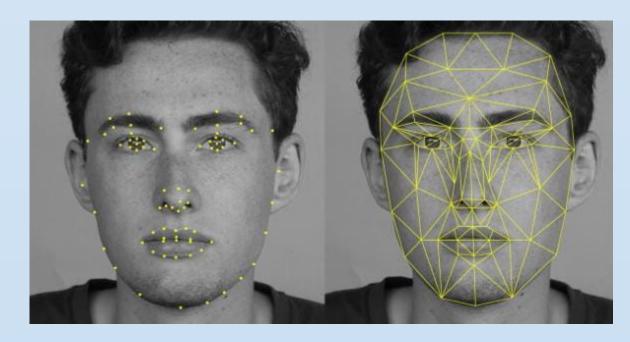
2nd Workshop on Advancement of Mathematics & it's Applications(WAMA-2024)

CNNs: Facial Expression Recognition via Deep Learning

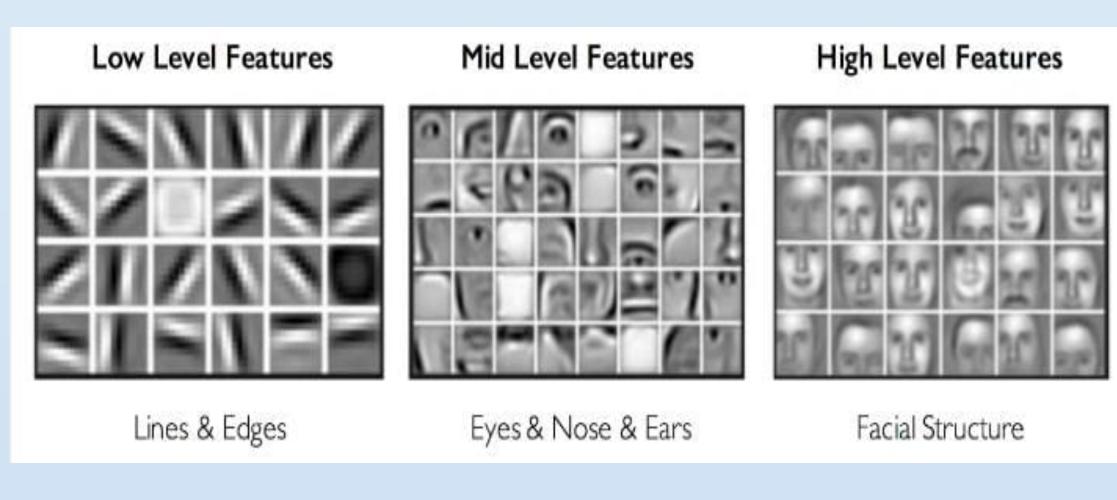
INTRODUCTION

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that is primarily used for image processing and recognition tasks. CNNs consist of multiple layers, each of which performs a specific operation to transform the input data.

The key component of CNNs is the convolutional layer, which applies convolution operations to the input image. These convolution operations involve sliding a small matrix called a kernel or filter over the input image to perform element-wise multiplication and then summing up the results to produce a feature map.



► Plus, our model uses Haar Cascades to detect faces. A pre-trained cascade of classifiers that can detect faces. This addresses most low light issues.

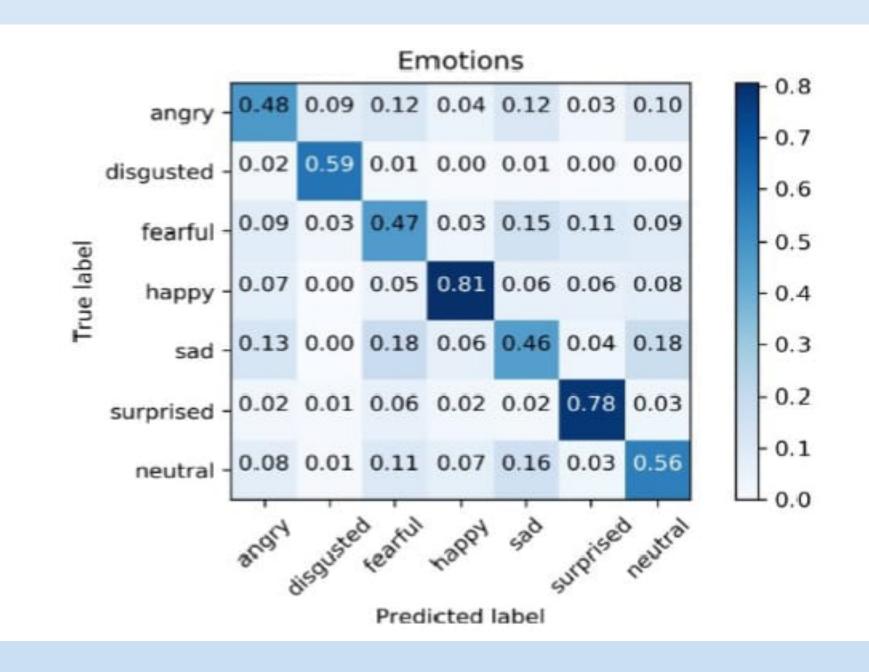


PROPOSED ARCHITECTURE

CONFUSION MATRIX

► Adam optimizer gave the highest overall accuracy.

► It does drastically better for faces showing disgust and fearful - almost 30%



OBJECTIVE

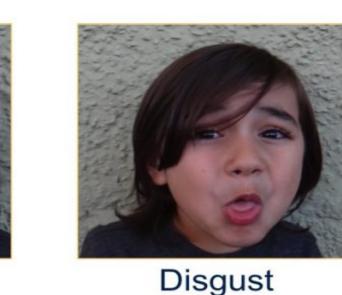
► Our goal is to develop a neural network to recognize facial expressions and classify them into one of seven emotions - happy, sad, disgusted, surprised, angry, fearful and neutral. ► By identifying these emotions, we will then generate content in the style of a news feed.

There are 6 universal emotions in all of the world's cultures.

Sadness

Anger

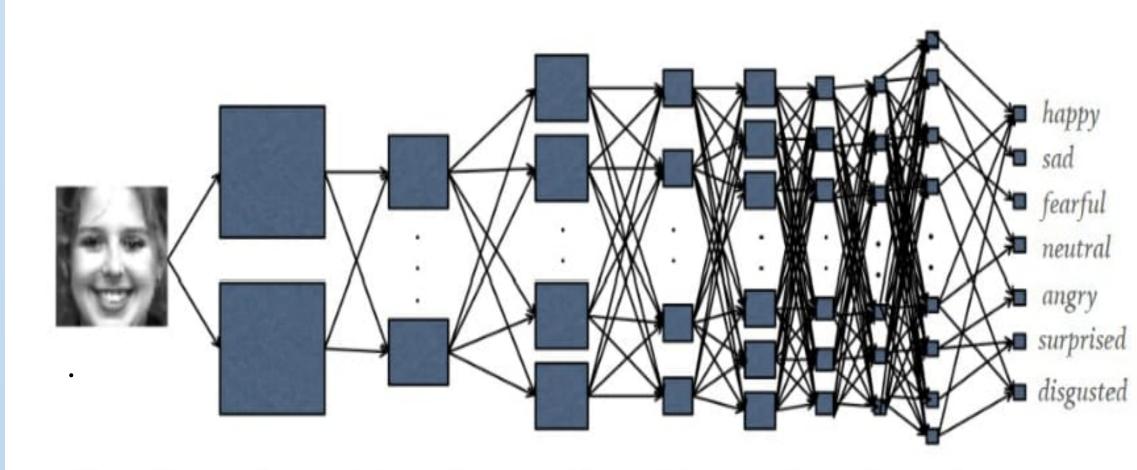
Happiness



Fear

Surprise

CHALLENGES



Max Pooling Conv Max Pooling FC Max Pooling Conv 1x1x128 1x1x256 1x1x7

PREPROCESSING THE DATA

The initial dataset was split into two sections - a string of 2304 numbers indicating pixel values for the image and a number from 1-7 indicating the emotion.

► We converted the string of numbers into a 48x48 matrix to feed into the neural network.

pixels emotion 70 80 82 72 58 58 60 63 54 58 60 48 89 115 121.

COMPARISON **OTHER** WITH SYSTEMS

► Similar systems that made use of emotion analysis did so on static images and not on real-time video streams.

► Some such models made use of using basic machine learning techniques such as Support Vector machine and Linear Discriminant Analysis, in combination with regular neural networks.

► A disadvantage of these systems is that they take a long time to train and their predictions are not instantaneous as required by a real-time system.

These systems take a long time to train because of the complexity of the data and the network itself.

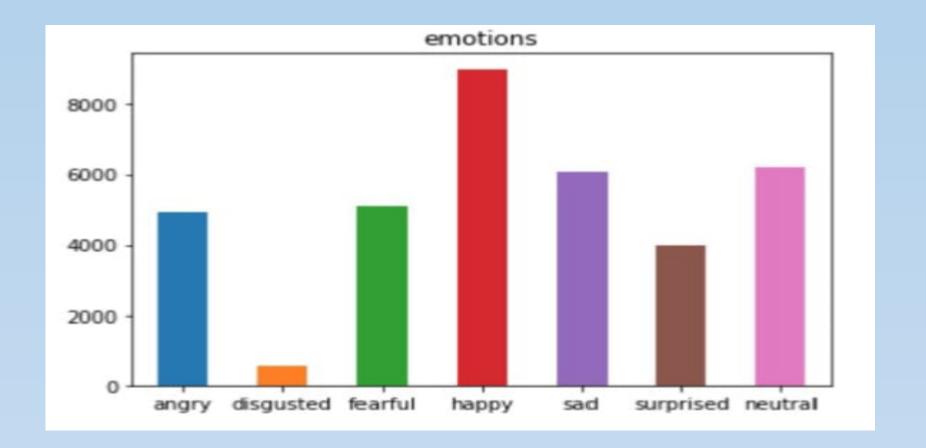
► Owing to the low computational requirements and faster training and prediction time, our model can be further developed for mobile use.

CONCLUSION

► Thus we conclude that a real-time system in which emotions can be detected is feasible and generating content based on these emotions is a viable proposal.

► Furthermore, the established average accuracy of 60% is competent considering the complex nature of a human face and the real-time

- ► Class Imbalance Problem.
- ► Moreover, a feedforward network generally predicts the same emotion all the time.
- ► Another issue is that images have to be well illuminated. Low light / highly exposed images produce poor results.



ADRESSING THE CHALLENGES

► We have used a deep neural network - a Convolutional Neural Network which is capable of overcoming this problem by spatial locality - detecting edges and extracting certain features.

	a
151 150 147 155 148 133 111 140 170 174 182 15	

- 2 231 212 156 164 174 138 161 173 182 200 106 38...
- 24 32 36 30 32 23 19 20 30 41 21 22 32 34 21 1...
- 400000000000315232848505884...

array([[70., 80., 82., ..., 52., 43., 41.], [65., 61., 58., ..., 56., 52., 44.], [50., 43., 54., ..., 49., 56., 47.], [91., 65., 42., ..., 72., 56., 43.], [77., 82., 79., ..., 105., 70., 46.], [77., 72., 84., ..., 106., 109., 82.]])

constraints.

REFERENCES

► [1] Albert Mehrabian. Silent Messages, University of California Los Angeles, 1971.

► [2] P. Ekman and W. V. Friesen. Emotional facial action coding system. Unpublished manuscript, University of California at San Francisco, 1983.

► [3] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

► [4] Thai Hoang Le. Applying artificial neural networks for face recognition. Advances in Artificial Neural Systems, 2011:15, 2011.

APPROACHES

Model	Batch Size	Optimizer	Epochs	Accuracy
Feed Forward	128	RMSProp	10	17.386
Simple CNN	128	RMSProp	10	24.728
Decision Tree	40	~	L	30.843
Model #1	96	RMSProp	100	57.397
Model #2	64	SGD	10	55.900
Model #3	128	Adam	20	60.587