Performance Optimization Techniques in Parallel Computing
Dr. Fatima Inamdar, Aishwarya Shukla, Gandharva Thite, Atharva Doifode, Sakshi Aherkar | VIIT, Pune

Introduction

Parallel computing has emerged as a crucial paradigm for tackling
complex computational problems by executing multiple tasks
simultaneously. However, achieving optimal performance in parallel
systems requires careful consideration of various factors, including load
balancing, communication overhead, and resource utilization. This
poster presentation explores key performance optimization techniques
in parallel computing to enhance efficiency and scalability.

Optimization Techniques

1.

Load Balancing Strategies:

Dynamic Load Balancing: Automatically redistributing computational
tasks among processing units to maintain workload balance.

Static Load Balancing: Assigning tasks to processing units at the
start of computation based on workload analysis.

Hybrid Load Balancing: Combining dynamic and static load
balancing techniques for improved performance in diverse
computing environments.

t—

Server
Load BalancinN

. Parallelization Models:

Task Parallelism: Decomposing tasks into smaller subtasks that can
be executed concurrently across multiple processors.

Data Parallelism: Distributing data across processing units and
performing the same operation on different data elements
simultaneously.

Hybrid Parallelism: Integrating task and data parallelism to leverage
the strengths of both approaches for complex computations.

| | |
Processor - 1 Processor - 2 Processor - 3

o

. Communication Optimization:

Minimizing Message Overhead: Reducing the frequency and
volume of communication between processing units to mitigate
latency and improve scalability.

Collective Communication Patterns: Employing collective
communication operations, such as broadcast, reduce, and
scatter/gather, to optimize data exchange among parallel
processes.

Asynchronous Communication: Overlapping computation with
communication to hide latency and improve overall system
throughput.

Parallel Algorithm Design:

Scalable Algorithms: Designing algorithms that exhibit efficient
performance across varying problem sizes and processor counts.
Cache Optimization: Utilizing data locality and cache-aware
algorithms to minimize memory access latency and enhance cache
utilization.

Fine-Grained Parallelism: Exploiting fine-grained parallelism within
algorithms to maximize processor utilization and reduce
synchronization overhead.

Performance Profiling and Tuning:

Profiling Tools: Utilizing performance monitoring tools to identify
bottlenecks and hotspots within parallel applications.

Code Optimization: Refactoring and optimizing code segments
based on profiling results to improve resource utilization and
execution efficiency.

Tuning Parameters: Adjusting runtime parameters, such as thread
affinity, task granularity, and communication protocols, to optimize
performance for specific hardware architectures.

Identifying Performance Fine-tuning Code Execution

Bottlenecks

Comparing Performance i,-‘ Debugging and
Across Different Platforms Ll Troubleshooting

Use Case

The study demonstrates that the use of GPU acceleration significantly
reduces training time in neural network training, from 15.14 seconds
per epoch without GPU to less than 1 second per epoch with GPU.
This highlights the critical role of GPU acceleration in enhancing the
efficiency of deep learning model training.

The average speedup ratio, calculated from the provided data,
indicates that the training process with GPU is on average 15.14
times faster than without GPU. This underscores the importance of
leveraging high-performance computing resources, such as GPUs, to
expedite the training of deep learning models and accelerate research
and development efforts.

In time-critical applications, such as healthcare, autonomous systems,
and natural language processing, fast results are crucial for timely
decision-making and real-time applications. High-performance
computing enables researchers and practitioners to train complex
deep learning models rapidly, facilitating quicker experimentation,
model development, and deployment. For example, in medical
imaging, fast model training allows for the timely analysis of patient
data and the development of diagnostic tools with enhanced accuracy
and efficiency.

Investments in high-performance computing technologies and
infrastructure are crucial to meet the evolving computational
requirements of deep learning applications and drive innovation in
artificial intelligence. In conclusion, GPU acceleration plays a pivotal
role in accelerating the training of deep learning models and achieving
faster results.

Time taken for 10 epochs with and without GPU

Average Speedup Ratio: 15.14

—e— CPU
-# With GPU

Time (seconds)

References
[1] Smith, J., Koerck, F., and Blush, W. Poster title [not peer
reviewed]. Peeref 2022 (poster). [doi]

This presentation poster was designed by FPPT. m

http://www.free-power-point-templates.com/

