

Frost-resistant polymeric material based on unsaturated polyketone and chlorine-containing epoxy oligomers

<u>Sidorov O.I.¹, Belyakov D.A.¹, Dubkov K.A.², Semikolenov S.V.²</u>

1. Soyuz Federal Center for Dual-Use Technologies, Dzerzhinskyi, Moscow oblast, Russia, <u>soyuz@fcdt.ru</u> 2. Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia

Abstract

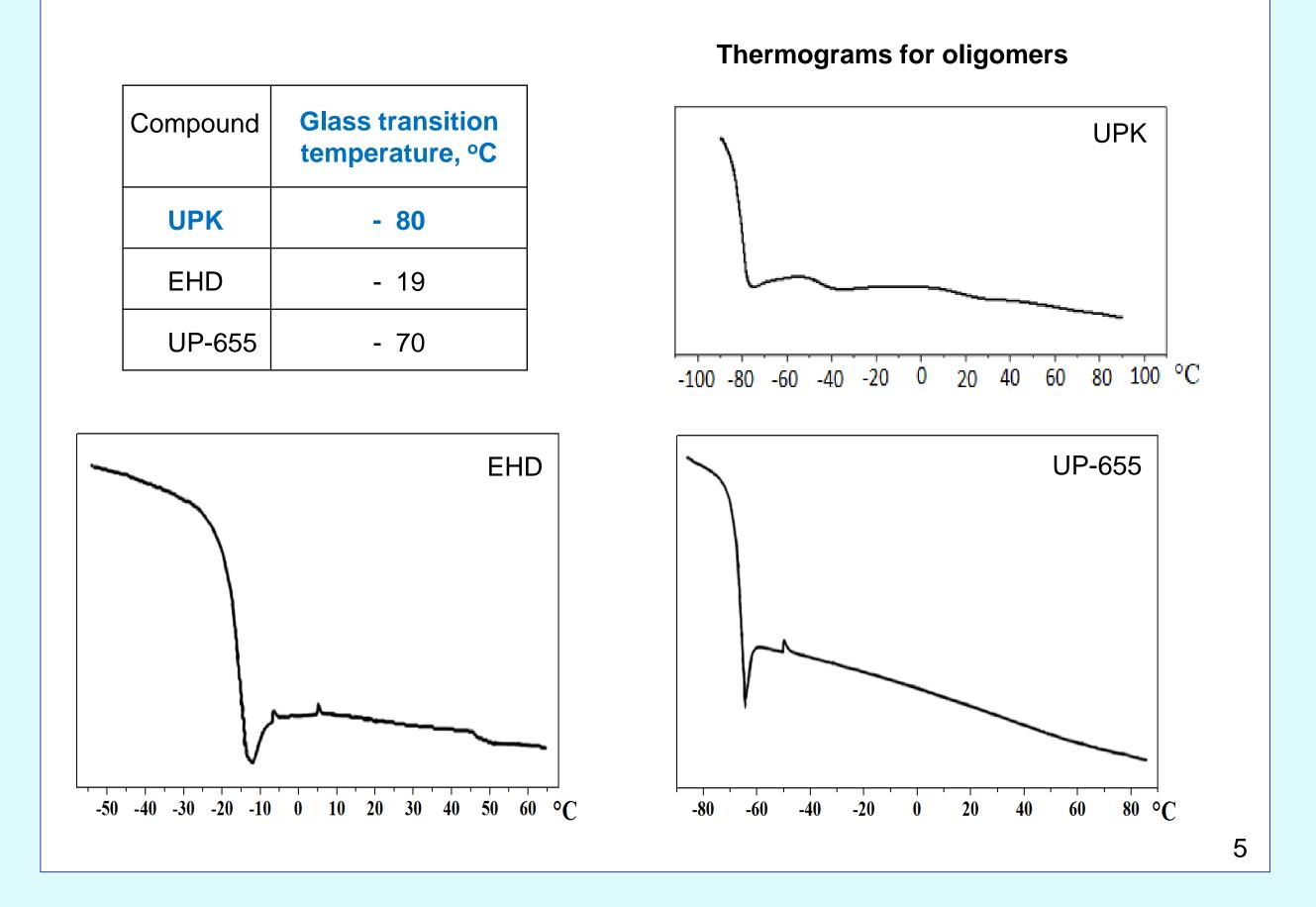
Modern technology requires the development of elastic polymeric materials with high frost and oil resistance. In this regard, it is promising to use a new type of reactive oligomers, namely, unsaturated polyketones (UPKs) [1, 2] as a basis for creation of polymeric compositions with enhanced properties. In this work, a new polymeric material was formulated using UPK containing 7.8 wt. % oxygen in the form of C=O groups, chlorine-containing epoxy oligomers, quinol ether as a cross-linking agent for UPK, isomethyl tetrahydrophthalic anhydride as a cross-linking agent for epoxy oligomers, and ionic liquid as a catalyst for curing epoxy oligomers. The developed polymeric material exhibits elastic properties in a wide temperature range and is characterized by an increase in deformation with a decrease in temperature from +50°C to -50°C, as well as by a low swelling capacity (no more than 5.5% at 70°C) in mineral oil. This material is promising for application in a wide temperature range (including low temperatures) in various fields of technology.

Introduction

Liquid oligomers containing functional groups constitute an important class of polymer compounds. They are useful as compatibilizers, plasticizers, and modifiers for a wide range of applications including sealants, coatings, adhesives, rubber goods, tire products, additives to composite materials, etc. The development of new types of functionalized oligomers, improved methods for their synthesis, and materials on their base deserves particular attention.

Earlier, we have shown that the non-catalytic selective oxidation of C=C bonds in diene rubbers by nitrous oxide, N₂O (the so-called ketonization reaction) opens a synthetic route for obtaining a new type of functionalized polymers and oligomers - unsaturated polyketones (UPKs) which contain ketone groups randomly distributed along the polymer backbone [1, 2]. The ketonization with N₂O is applicable to various types of diene rubbers and allows obtaining UPKs with different structure of monomeric units, controllable molecular weight, and specified concentration of carbonyl groups. For example, the composition of UPKs obtained by the ketonization of cis-1,4butadiene rubbers can be presented by the following formula:

$CH_2=CH-(CH_2-CH=CH-CH_2)_m-(CH_2-CH_2-CH_2)_n-CH_2-C_{1}$

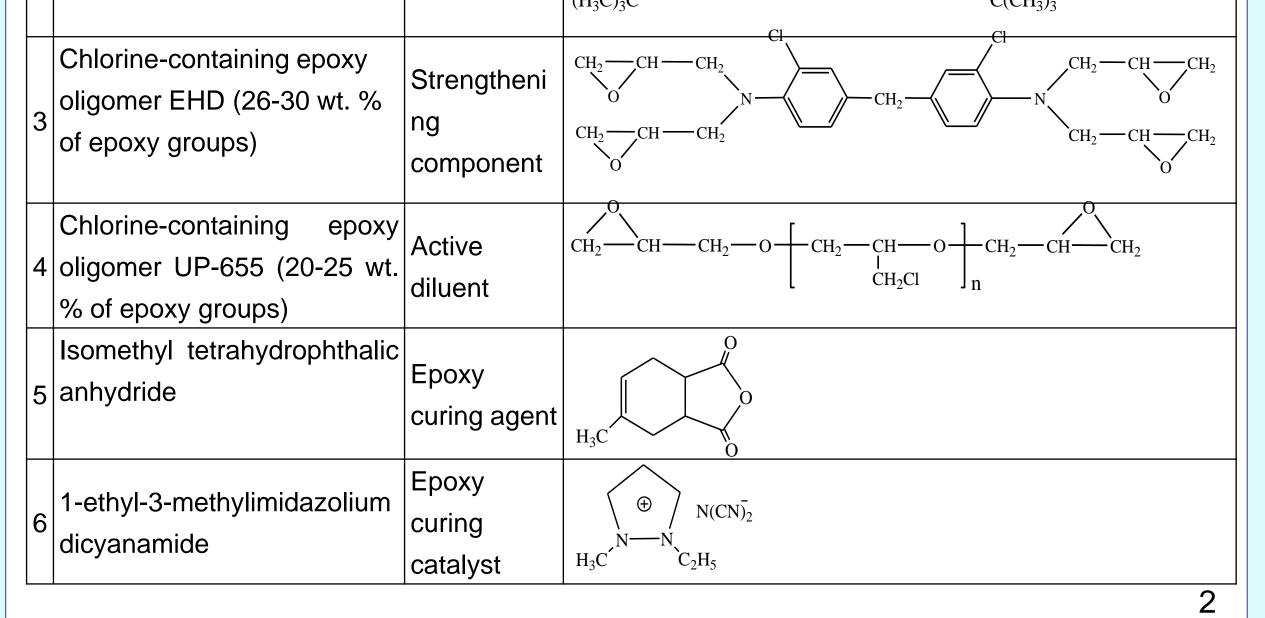

Due to their adhesive, rheological, and chemical properties, oligomeric UPKs can be used as modifying additives to rubber compounds/vulcanizates, components of epoxy-based materials and adhesive compositions, and in other applications [2-4]. In this work, a new elastic material with high frost and oil resistance was formulated using chlorine-containing epoxy oligomers and UPK obtained by the ketonization of cis-1,4-butadiene rubber.

References

1. Dubkov K.A., Semikolenov S.V., D.E. Babushkin, et al., J. Polym. Sci. A, 44(2006) 2510-2520. 2. Dubkov K.A., Panov G.I., Parmon V.N., Russ. Chem. Rev., 2017, 86, 510–529. 3. Sidorov O.I., Dubkov K.A., et al., Polym. Sci., Ser. D, 11(2018) 215-224. 4. Sidorov O.I., Evseev N.E., et al., Polym. Sci., Ser. D, 13(2020) 85-88.

(Components of polym	eric mate	rial based on UPK
#	Components	Function	Formula
	Unsaturated Polyketone (7.8 wt.% O as C=O groups, Mn = 8100, Mw/Mn = 2.7)	Basis	$CH_2 = CH - (CH_2 - CH = CH - CH_2)_m - (CH_2 - CH_2 - C - CH_2)_n - CH_2 - C \overset{O}{\underset{H}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}}{\overset{H}{H$
2	EQ-1 quinol ester (melting point > 160°C)	UPK curing agent	$(H_3C)_3C$ O O O O O O O O

Low-temperature properties of oligomers



Mechanical characteristics of the material based on UPK cured with quinol ether

Characteristic	Value	
Tensile strength, σ , MPa	0,05	•
Deformation at break, ε, %	32	•
Tensile modulus, E10%, MPa	0,225	

 Since UPC contains double bonds, it can be cured with quinol ether

However, the obtained material has low mechanical characteristics

Effect of temperature on the viscosity of oligomers and their mixtures

		Temperature (°C)								
Compound	25	30	35	40	45	50	55	60	65	70
	Viscosity (η, Pa·sec)									
UPK	27,3	20,6	15,4	11,5	8,9	7,1	5,69	4,7	3,83	3,23
EHD chlorine/epoxy oligomer		81,0	38,0	18,7	10,0	5,7	3,4	2,06	1,32	0,89
UP-655 chlorine/epoxy oligomer	-	0,09	0,07	0,05	0,04	0,032	0,025	0,021	0,018	0,025
EHD + UP-655 (2 : 1)	_	2,63	1,64	1,04	0,68	0,46	0,32	0,23	0,17	0,13
EHD + UP-655 (1 : 1)		0,80	0,54	0,37	0,26	0,19	0,14	0,11	0,081	0,07
UPK + EHD + UP-655 (100 : 45 : 45)	12,0	8,9	6,44	4,81	3,64	2,80	2,22	1,77	1,42	1,18

Mechanical characteristics of polymeric material based on UPK and chlorine-containing epoxy oligomers

Characteriatia	Temperature, °C				
Characteristic	+50	+20	-50		
Tensile strength, σ , MPa	0,51	0,56	3,48		
Deformation at break, ε, %	16,6	15,1	40,6		
Tensile modulus, E10%, MPa	3,27	4,40	17,4		

Properties of the developed polymeric material:

- Elasticity in a wide temperature range
- ◆ Increase in deformation with a decrease in temperature from +50°C to -50°C

Swelling kinetics of polymeric materials based on UPK in non-polar plasticizer (mineral oil) and polar plasticizer (dibutyl phthalate, DBF)

	Polymeric material						
	Based or	n UPK cure	d Bas	Based on UPK and			
	with qu	inol ether	chloi	chlorine-containing			
Time,	epoxy oligomers						
days	Plasticizer						
	mineral	DBF	mineral	DBF			
	oil		oil				
	Swelling, %						
0	0	0	0	0			
0,3	3,6	273	4,2	83,4			
1	4,8		5,4	113			
3	4,9		5,0	112			
5	4,7		5,5	112			
7			5,3	113			
10			5,2	116			
15				120			
20				130			
25		_	—	136			

• Viscosity of (EHD + UP-655) composition is lower than that of EHD oligomer

- UPK is compatible with a mixture of EHD and UP-655 oligomers
- Viscosity of (UPK + EHD + UP-655) composition is lower than that of UPK and EHD
- This makes it possible to create a composition with acceptable technological properties

3

4

Viscous flow parameters for oligomers and their mixtures

	Viscous flow parameters			
Compound	<mark>η</mark> _∞ , Pa·sec	E _n , kJ/mol		
UPK	2,09 · 10 ⁻⁶	40,6		
EHD	1,21.10 ⁻¹⁵	97,2		
UP-655	2,16·10 ⁻⁸	38,2		
EHD + UP-655 (2 : 1)	1,56·10 ⁻¹¹	64,9		
EHD + UP-655 (1 : 1)	3,10.10-10	54,4		
UPK + EHD + UP-655 (100 : 45 : 45)	2,21·10 ⁻⁷	44,2		

The dependence of viscosity on temperature:

 $\eta_0 = \eta_{\infty} \exp(E_n/RT)$

• Polymeric materials based on UPK shows low swelling in mineral oil

Conclusions

A frost-resistant polymeric material based on unsaturated polyketone and chlorinecontaining epoxy oligomers has been created.

The developed material exhibits elastic properties in a wide temperature range. It is characterized by an increase in deformation with a decrease in temperature from +50°C to -50°C, as well as by a low swelling capacity (no more than 5.5% at 70°C) in mineral oil.

This material with enhanced properties can be used as a base for frost- and oilresistant adhesives and sealants.