Soil Science

Article Geosciences, Multidisciplinary

How do the distribution patterns of exposed roots affect the rainfall-runoff processes of sloped land under simulated multi-rainfall conditions in karst region?

Zhen Han, Xiuchao Yang, Xiaoai Yin, Qian Fang, Longshan Zhao

Summary: This study investigated the effects of exposed root distribution patterns on rainfall-runoff processes. The results showed that the distribution patterns of exposed root had a significant impact on rainfall-runoff processes. A vertical slope arrangement was conducive to rainfall infiltration, a parallel slope arrangement resulted in more surface runoff, and a transverse slope arrangement could reduce water loss.

CATENA (2024)

Article Geosciences, Multidisciplinary

Non-linear effects of temperature and moisture on gross N transformation rates in an Inner Mongolian grassland

Jiale Chen, Michael Dannenmann, Qiang Yu, Yalong Shi, Matthew D. Wallenstein, Xinguo Han, Honghui Wu, Klaus Butterbach-Bahl

Summary: This study investigated the effects of temperature and moisture on soil nitrogen turnover through field experiments and laboratory incubation experiments. The results showed that soil temperature had a greater explanatory power than moisture in gross ammonification and nitrification rates. Climate warming may have a greater impact on gross nitrogen turnover compared to changes in rainfall.

CATENA (2024)

Article Soil Science

Determination of soil water retention curves from thermal conductivity curves, texture, bulk density, and field capacity

Lin Liu, Yili Lu, Robert Horton, Tusheng Ren

Summary: A new approach is presented in this study to estimate the parameters of the soil water retention curve (SWRC). The new method accurately estimates SWRCs by using measured thermal conductivity-water content curves, soil texture, bulk density, and field capacity water content.

SOIL & TILLAGE RESEARCH (2024)

Article Geosciences, Multidisciplinary

Unprecedentedly high soil carbon stocks and their spatial variability in a seasonally dry Atlantic Forest in Brazil

Vanessa Alves Mantovani, Marcela de Castro Nunes Santos Terra, Andre Ferreira Rodrigues, Carlos Alberto Silva, Li Guo, Jose Marcio de Mello, Carlos Rogerio de Mello

Summary: There is a lack of research on the potential of tropical soils in the Brazilian Atlantic Forest biome to store carbon. This study aimed to determine the soil carbon stocks at different depths, describe their temporal variability, and identify the main drivers that influence their variations. The results showed significant spatial and seasonal variability in soil carbon stocks, with a high accumulation in December and a low accumulation in August. The study also found that litterfall, throughfall, tree sizes, and soil moisture were important factors affecting the distribution of soil carbon.

CATENA (2024)

Article Geosciences, Multidisciplinary

Effects of different vegetation components on soil erosion and response to rainfall intensity under simulated rainfall

Shue Wei, Kuandi Zhang, Chenglong Liu, Youdong Cen, Junqiang Xia

Summary: This study analyzed the effects of different vegetation components on erosion through simulated rainfall experiments and found that litter had the best effect in reducing erosion, followed by roots. The study also revealed that the reduction in runoff and sediment by the treatments decreased with increasing rainfall intensity.

CATENA (2024)

Article Soil Science

Cover crop functional types alter soil nematode community composition and structure in dryland crop-fallow rotations

Ismail Ibrahim Garba, Graham R. Stirling, A. Marcelle Stirling, Alwyn Williams

Summary: Integrating diverse cover crops into dryland crop-fallow rotations can enhance soil nutrient and water retention, suppress soil-borne pests, and improve soil health. The effects on soil nematode communities are modulated by the functional type and mixture composition of the cover crops. Selecting cover crops with appropriate traits can improve soil health through suppression of plant-parasitic nematodes, promotion of free-living nematodes, and enhancement of soil food web complexity.

APPLIED SOIL ECOLOGY (2024)

Article Geosciences, Multidisciplinary

Importance of carbon and nitrogen availability to microbial necromass carbon accumulation in the drawdown area

Shanshan Liao, Xiaodong Nie, Aoqi Zeng, Wenfei Liao, Yi Liu, Zhongwu Li

Summary: Lake drawdown areas, where sediment is exposed due to water level fluctuations, have a significant impact on the carbon cycle. This study examined microbial necromass carbon (MNC) content and its contribution to soil organic carbon (SOC) in different habitats within the drawdown area of Dongting Lake. The results showed that MNC content varied among habitats and was primarily influenced by carbon and nitrogen availability, plant biomass, clay content, and soil moisture. External factors, such as plant and soil properties, played a more crucial role in the long-term accumulation of MNC. These findings enhance our understanding of MNC stability in drawdown areas.

CATENA (2024)

Article Geosciences, Multidisciplinary

Climatological and geological controls on seismic earthflows in coastal areas

Bo Zhao

Summary: Seismic earthflows, as special seismic landslides, have not received much attention in previous studies. This study analyzed the characteristics and movement of earthflows induced by recent earthquakes. The results showed that earthflows occur in high-rainfall areas and are sensitive to rainfall. Compared to other seismic landslides, seismic earthflows occur on gentler hills and have higher mobility.

CATENA (2024)

Article Soil Science

Drought-induced tree mortality in Scots pine mesocosms promotes changes in soil microbial communities and trophic groups

Astrid C. H. Jaeger, Martin Hartmann, Rafaela Feola Conz, Johan Six, Emily F. Solly

Summary: This study investigates the effects of tree mortality on soil microbial communities using a mesocosm experiment. The results show that tree death influenced soil microbial abundance and composition, with the potential to affect soil processes in forest ecosystems.

APPLIED SOIL ECOLOGY (2024)

Article Geosciences, Multidisciplinary

A city against the current: A reconstruction of Holocene sea-level changes and the evolution of coastal landscapes in ancient Abdera (Thrace, Gr.)

Alfredo Mayoral, Ana Ejarque, Arnau Garcia-Molsosa, Mercourios Georgiadis, Giannis Apostolou, Vincent Gaertner, Constantina Kallintzi, Eurydice Kefalidou, Hector Orengo

Summary: This paper presents an integrated Geoarchaeological approach to studying the landscape change and socio-environmental interaction around ancient Abdera. The study uses a combination of remote sensing, geomorphological mapping, sedimentary coring, and radiocarbon dating to reconstruct the palaeogeographic evolution of the area. The results challenge previous narratives about the rise and decline of Abdera and provide new insights into the role of historical and environmental factors. It also introduces evidence of submerged Neolithic landscapes and the impact of anthropogenic forcing on the sedimentary systems.

CATENA (2024)

Article Geosciences, Multidisciplinary

Season shapes the functional diversity of microbial carbon metabolism in mangrove soils of Hainan Island, China

Haihua Wang, Huaiyang Ke, Hongping Wu, Siyuan Ma, Muhammad Mohsin Altaf, Xiaoping Diao

Summary: Carbon storage in mangroves is crucial for mitigating climate change, but our understanding of this aspect is limited. This study investigated the seasonal changes in the carbon metabolic profile of microbial communities in mangrove soils on Hainan Island, China, and found that season plays a critical role in shaping the carbon functional diversity of microbial communities.

CATENA (2024)

Article Geosciences, Multidisciplinary

Soil phosphorus fractions dynamics along a 22-ka chronosequence of landslides, western Sichuan, China

Junbo He, Yanhong Wu, He Zhu, Jun Zhou, Chaoyi Luo, Haijian Bing

Summary: Landslides have a significant influence on bedrock weathering, pedogenesis, and ecological succession, playing a pivotal role in biogeochemical cycles. Landslide chronosequences are valuable study systems for investigating vegetation succession, soil development, and nutrient dynamics. This study analyzed soil phosphorus fractions across a 22,000-year landslide chronosequence, revealing the impact of environmental factors on these fractions and elucidating the supply of bioavailable phosphorus.

CATENA (2024)

Article Geosciences, Multidisciplinary

A copula-based parametric composite drought index for drought monitoring and applicability in arid Central Asia

Nanji Suo, Changchun Xu, Linlin Cao, Lingling Song, Xiaoni Lei

Summary: In this paper, a non-linear trivariate drought index (NTDI) was developed to comprehensively monitor and evaluate drought events by considering precipitation, potential evapotranspiration, and soil moisture. The NTDI performed well in agricultural drought monitoring, providing accurate and reliable information.

CATENA (2024)

Article Geosciences, Multidisciplinary

Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation

Yongsheng Hong, Jonathan Sanderman, Tomislav Hengl, Songchao Chen, Nan Wang, Jie Xue, Zhiqing Zhuo, Jie Peng, Shuo Li, Yiyun Chen, Yaolin Liu, Abdul Mounem Mouazen, Zhou Shi

Summary: This study used a globally distributed topsoil MIR spectral library to predict SOC using different modeling methods. The results showed that fractional-order derivatives (FODs) improved the prediction accuracy of SOC. The 0.75-order derivative was found to be optimal for ratio index-based linear regression (RI-LR) models, while the convolutional neural network (CNN) model outperformed other models for full-spectrum modeling.

CATENA (2024)

Article Soil Science

Assessing soil structural quality as an indicator of productivity under semi-arid climate

Zahra Khasi, Mohammad Sadegh Askari, Setareh Amanifar, Kamran Moravej

Summary: This research aims to evaluate the applicability of visual soil evaluation methods for agricultural systems in semi-arid regions and assess the relationship between soil physical quality and crop yield. The results indicate that visual evaluation methods can effectively assess soil conditions, and optimal soil structural quality is crucial for sustainable crop production.

SOIL & TILLAGE RESEARCH (2024)

Article Geosciences, Multidisciplinary

Distinct variabilities of soil abundant and rare bacteria relate differently to carbon cycling functionality in eroded ecosystems

Lanlan Du, Shengli Guo, Rui Wang, Yanqing Guo, Yaxian Hu, Lin Yang, Weijia Li

Summary: Exploring the changes in abundant and rare sub-communities and their correlations with soil carbon cycling functionality (SCCF), this study sheds light on the different characteristics of these sub-communities in eroded ecosystems. Abundant sub-communities show higher degree and betweenness centrality in the co-occurrence network, while rare sub-communities have more frequent positive interactions with other species. The alpha-diversity of both abundant and rare sub-communities is positively linked to SCCF.

CATENA (2024)

Article Soil Science

Impact of drought on terrestrial ecosystem C-N-P stoichiometry and microbial nutrient limitation

Hongwei Xu, Qing Qu, Jiaping Yang, Zhen Wang, Minggang Wang, Rentao Liu, Sha Xue

Summary: This study systematically analyzed the effects of drought on terrestrial ecosystem C-N-P stoichiometry on a global scale. The results showed that drought significantly decreased the C:N ratio in soil, enzymes, shoots, and roots. Soil microbes were limited by N, whereas plants were restricted by P under drought stress. Drought intensity and duration were negatively correlated with shoot N:P and vector angle.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

The impact of paleoclimatic on the structural strength of loess paleosol sequences and its implications for tillage on the Loess Plateau: A case study from Luochuan profile

Haiman Wang, Wankui Ni, Haisong Liu, Kangze Yuan

Summary: This study investigates the structural strength of the Loess-Paleosol Sequence (LPS) and finds that the strength tends to increase with burial depth, with the loess layer weaker than the paleosol layer. The microstructure of the LPS also undergoes significant transformations with increased burial depth, transitioning from an overhead structure to a matrix structure. These findings highlight the importance of climate conditions on the structural strength of the LPS.

SOIL & TILLAGE RESEARCH (2024)

Article Geosciences, Multidisciplinary

A new method for spatial three-dimensional prediction of soil heavy metals contamination

Fengbei Shen, Chengdong Xu, Jinfeng Wang, Maogui Hu, Guanlin Guo, Tingting Fang, Xingbao Zhu, Hongying Cao, Huan Tao, Yixuan Hou

Summary: Soil heavy metals contamination is closely related to human health. Three-dimensional modeling and mapping are crucial for site assessment and remediation. However, current methods have limitations in considering spatial auto-correlation and stratified heterogeneity simultaneously. This study introduced a novel methodology, 3D-MSN, which accounted for both auto-correlation and heterogeneity. The results demonstrated the superiority of 3D-MSN compared to traditional approaches, providing valuable insights for site assessment and remediation efforts.

CATENA (2024)

Article Soil Science

Change in phosphorus availability, fractions, and adsorption-desorption by 46-years of long-term nutrient management in an Alfisol of eastern India

Ranabir Chakraborty, V. K. Sharma, Debarup Das, D. R. Biswas, P. Mahapatra, D. K. Shahi, M. Barman, K. A. Chobhe, D. Chakraborty

Summary: This study aimed to evaluate the impact of long-term nutrient management practices on P fractions and P adsorption-desorption behaviour of an acid soil with a soybean-wheat cropping system. The findings revealed that amorphous Fe and Al, which play a significant role in P fixation, increased due to cultivation. The NPK+Lime treatment offered the most balanced approach, improving both crop yield and P uptake while effectively managing P dynamics in the soil. On the contrary, long-term application of NPK+FYM in an acid soil may result in faster P saturation of adsorption sites and increase the chances of leaching and eutrophication. Tailored P fertilization strategies should be developed to better utilize the PFe and PAl fractions and supplementing applied P.

SOIL & TILLAGE RESEARCH (2024)