Robotics

Article Computer Science, Interdisciplinary Applications

An ontology-based data-model coupling approach for digital twin

Xin Ma, Qinglin Qi, Fei Tao

Summary: This paper proposes an ontology-based data-model coupling method to achieve physical-virtual consistency in digital twin. The implementation of this method, including relation establishment, data-model coupling, and relation evolution, is demonstrated through experiments to prove its feasibility and practicability.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

A novel tool path smoothing algorithm of 6R manipulator considering pose-dependent dynamics by designing asymmetrical FIR filters

Hongwei Sun, Jixiang Yang, Han Ding

Summary: This paper proposes an asymmetrical FIR filter-based tool path smoothing algorithm to fully utilize the joint drive capability of robot manipulators. The algorithm considers the pose-dependent dynamics and constraints of the robot and improves motion efficiency by over 10% compared to traditional methods.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Teleoperation mode and control strategy for the machining of large casting parts

Meng Wang, Kaixuan Chen, Panfeng Wang, Yimin Song, Tao Sun

Summary: In this study, a novel teleoperation machining mode and control strategy were proposed to improve efficiency and accuracy in small batch production of large casting parts. By using variable motion mapping and elastic compensation, constant cutting force was achieved, and the workpiece was protected by employing forbidden virtual fixtures and movement constraints on the slave robot.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

An iterative path compensation method for double-sided robotic roller forming of compact thin-walled profiles

Yi Liu, Junpeng Qiu, Jincheng Wang, Junhe Lian, Zeran Hou, Junying Min

Summary: In this study, a double-sided robotic roller forming process was developed to form ultrahigh strength steels to thin-walled profiles. Synchronized laser heating and iterative path compensation method were used to reduce forming forces and achieve high-precision forming.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

The e-Bike motor assembly: Towards advanced robotic manipulation for flexible manufacturing

Leonel Rozo, Andras G. Kupcsik, Philipp Schillinger, Meng Guo, Robert Krug, Niels van Duijkeren, Markus Spies, Patrick Kesper, Sabrina Hoppe, Hanna Ziesche, Mathias Buerger, Kai O. Arras

Summary: Robotic manipulation is undergoing a profound paradigm shift due to increasing demand for flexible manufacturing systems and advancements in sensing, learning, optimization, and hardware. This shift requires robots to observe and reason about their workspace and possess the skills to complete various assembly processes in weakly-structured settings. Enabling on-site teaching of robots while managing the complexity of perception, control, motion planning, and reaction to unexpected situations remains a significant challenge.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

An augmented reality-assisted interaction approach using deep reinforcement learning and cloud-edge orchestration for user-friendly robot teaching

Changchun Liu, Dunbing Tang, Haihua Zhu, Qingwei Nie, Wei Chen, Zhen Zhao

Summary: Industrial robots play a vital role in intelligent manufacturing equipment, but often require pre-programmed motion planning schemes. This research proposes an augmented reality-assisted interaction approach using deep reinforcement learning and cloud-edge orchestration for user-friendly robot teaching.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Research on the directionality of end dynamic compliance dominated by milling robot body structure and milling vibration suppression

Jiawei Wu, Xiaowei Tang, Shihao Xin, Chenyang Wang, Fangyu Peng, Rong Yan

Summary: This research investigates the end dynamic characteristics of a milling robot in vibration control and chatter avoidance. The directional distribution of the end dynamic characteristics is studied by proving the directionality of the end modal vibration and modeling the distribution of the end dynamic compliance. The research provides a new theoretical basis for studying the robotic end dynamic characteristics and their applications.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Path Planning for the Gantry Welding Robot System Based on Improved RRT

Xuewu Wang, Jin Gao, Xin Zhou, Xingsheng Gu

Summary: This article proposes an improved RRT* algorithm for autonomous path planning of welding robots with a large gantry structure. The method introduces the sampling pool mechanism, effectively shortens the search path length, and adopts the strategy of limiting the nearest node to improve efficiency.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

A deep learning-enhanced Digital Twin framework for improving safety and reliability in human-robot collaborative manufacturing

Shenglin Wang, Jingqiong Zhang, Peng Wang, James Law, Radu Calinescu, Lyudmila Mihaylova

Summary: In Industry 5.0, Digital Twins provide flexibility and efficiency for smart manufacturing. Deep learning techniques are used to enhance the Digital Twin framework, enabling the detection and classification of human operators and robots during the manufacturing process. The framework shows promising results in accurately detecting and classifying actions of human operators and robots in various scenarios.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process

Jie Li, Zili Wang, Shuyou Zhang, Yaochen Lin, Lanfang Jiang, Jianrong Tan

Summary: This paper proposes a task incremental learning-based approach for digital-twin predictive modeling, which establishes a DT framework and information model, fine-tunes the model with pre-trained models and new task data, and achieves accurate prediction of customized metal tube bending forming process.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Automation & Control Systems

Development of a novel resonant piezoelectric motor using parallel moving gears mechanism

Qiaosheng Pan, Yifang Zhang, Xiaozhu Chen, Quan Wang, Qiangxian Huang

Summary: A resonant piezoelectric rotary motor using parallel moving gears mechanism has been proposed and tested, showing high power output and efficiency.

MECHATRONICS (2024)

Article Computer Science, Interdisciplinary Applications

Toolpath Generation for Robotic Flank Milling via Smoothness and Stiffness Optimization

Yongxue Chen, Yaoan Lu, Ye Ding

Summary: This paper presents an optimization method for directly generating a six-degree-of-freedom toolpath for robotic flank milling. By optimizing the smoothness of the toolpath and the stiffness of the robot, the efficiency, accuracy, and finish of the machining are improved.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Automation & Control Systems

A novel robotic system enabling multiple bilateral upper limb rehabilitation training via an admittance controller and force field

Ran Jiao, Wenjie Liu, Ramy Rashad, Jianfeng Li, Mingjie Dong, Stefano Stramigioli

Summary: A novel end-effector bilateral rehabilitation robotic system (EBReRS) is developed for upper limb rehabilitation of patients with hemiplegia, providing simulations of multiple bimanual coordinated training modes, showing potential for application in home rehabilitation.

MECHATRONICS (2024)

Article Automation & Control Systems

Overcome the Fear Of Missing Out: Active sensing UAV scanning for precision agriculture

Marios Krestenitis, Emmanuel K. Raptis, Athanasios Ch. Kapoutsis, Konstantinos Ioannidis, Elias B. Kosmatopoulos, Stefanos Vrochidis

Summary: This paper addresses the issue of informative path planning for a UAV used in precision agriculture. By using a non-uniform scanning approach, the time spent in areas with minimal value is reduced, while maintaining high precision in information-dense regions. A novel active sensing and deep learning-based coverage path planning approach is proposed, which adjusts the UAV's speed based on the quantity and confidence level of identified plant classes.

ROBOTICS AND AUTONOMOUS SYSTEMS (2024)

Article Robotics

Power-assist on slope with velocity compensation for attendant-propelled electric wheelchairs

Peirang Li, Naoya Ueda, Chi Zhu

Summary: This study focuses on the traditional attendant-propelled power-assist wheelchairs (APAWs) and identifies the discomfort caused by changes in handle velocity when passing through a slope. To address this issue, a velocity compensation method is proposed and validated through simulations and experiments.

ADVANCED ROBOTICS (2024)

Article Robotics

Stable posture tracking for modular spatial hyper-redundant serial arms using selective control points

Aime Charles Alfred Dione, Shoichi Hasegawa

Summary: This study proposes a new method to solve the kinematic hyper redundancy problem in posture control of a robotic arm with redundant degrees of freedom. By controlling strategic points along the arm, the method guides the overall motion of the arm towards the target posture. The method is capable of safely and accurately tracking target postures that are significantly different from the initial posture.

ADVANCED ROBOTICS (2024)

Article Robotics

Individual axis control for industrial robots by posture-variant dynamic compensation and feedback control using the FDTD method

Juan Padron, Kenta Tatsuda, Kiyoshi Ohishi, Yuki Yokokura, Toshimasa Miyazaki

Summary: This paper proposes a method that takes into account real-time posture-dependent inertial variation to achieve exact dynamic compensation and independent control of each axis for industrial robots. By discretizing the state equations of the posture-variant two-inertia system model, the whole control system can be easily redeisgned at each control cycle to address the issues caused by posture changes.

ADVANCED ROBOTICS (2024)

Article Automation & Control Systems

Improving accuracy reconstruction of parts through a capability study: A methodology for X-ray Computed Tomography Robotic Cell

Adrien Le Reun, Kevin Subrin, Anthony Dubois, Sebastien Garnier

Summary: This study aims to evaluate the quality and health of aerospace parts using a high-dimensional robotic cell. By utilizing X-ray Computed Tomography devices, the interior of the parts can be reconstructed and anomalies can be detected. A methodology is proposed to assess both the raw process capability and the improved process capability, with three strategies developed to improve the robot behavior model and calibration.

ROBOTICS AND AUTONOMOUS SYSTEMS (2024)

Article Automation & Control Systems

An analytical differential kinematics-based method for controlling tendon-driven continuum robots

Weiming Ba, Jung-Che Chang, Jing Liu, Xi Wang, Xin Dong, Dragos Axinte

Summary: This paper proposes a hybrid scheme for kinematic control of continuum robots, which avoids errors through tension supervision and accurate piecewise linear approximation. The effectiveness of the controller is verified on different continuum robotic systems.

ROBOTICS AND AUTONOMOUS SYSTEMS (2024)

Article Automation & Control Systems

Design and experiment of a variable stiffness prosthetic knee joint using parallel elastic actuation

Jinliang Zhu, Yuanxi Sun, Jie Xiong, Yiyang Liu, Jia Zheng, Long Bai

Summary: This paper proposes an active prosthetic knee joint with a variable stiffness parallel elastic actuation mechanism. Numerical verifications and practical experiments demonstrate that the mechanism can reduce torque and power, thus reducing energy consumption and improving the endurance of the prosthetic knee joint.

ROBOTICS AND AUTONOMOUS SYSTEMS (2024)