Biophysics

Article Biophysics

Individuals with rotator cuff tears unsuccessfully treated with exercise therapy have less inferiorly oriented net muscle forces during scapular plane abduction

Luke T. Mattar, Arash B. Mahboobin, Adam J. Popchak, William J. Anderst, Volker Musahl, James J. Irrgang, Richard E. Debski

Summary: Exercise therapy fails in about 25.0% of cases for individuals with rotator cuff tears, and one reason for this failure may be the inability to strengthen and balance the muscle forces that keep the humeral head in the correct position. This study developed computational musculoskeletal models to compare the net muscle force before and after exercise therapy between successfully and unsuccessfully treated patients. The study found that unsuccessfully treated patients had less inferiorly oriented net muscle forces, which may increase the risk of impingement.

JOURNAL OF BIOMECHANICS (2024)

Article Biochemistry & Molecular Biology

A disposable immunosensor for the detection of salivary MMP-8 as biomarker of periodontitis

Cristina Tortolini, Valeria Gigli, Antonio Angeloni, Federico Tasca, Nguyen T. K. Thanh, Riccarda Antiochia

Summary: The development of a novel voltammetric immunosensor for the detection of salivary MMP-8 at the point-of-care is described. The sensor showed good performance and comparable results to the conventional ELISA method when tested in real saliva samples. This biosensor is single-use, cost-effective, and requires a small quantity of test medium and a short preparation time.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Facile construction of nanocubic Mn3[Fe(CN)6]2@Pt based electrochemical DNA sensors for ultrafast precise determination of SARS-CoV-2

Mengjiao Zhu, Yu Liu, Meiyue Wang, Tao Liu, Zhenyu Chu, Wanqin Jin

Summary: Early rapid diagnosis of COVID-19 is crucial for reducing the risk of severe symptoms and loss of lung function. Researchers have proposed an ultrafast and ultrasensitive DNA sensor that can accurately detect the virus in a short period of time, with outstanding selectivity.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

A ratiometric molecular imprinted electrochemiluminescence sensor based on enhanced luminescence of CdSe@ZnS quantum dots by MXene@NaAsc for detecting uric acid

Miao Liu, Yuwei Wang, Shanshan Tang, Wei Wang, Axin Liang, Aiqin Luo

Summary: An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid using MXene@NaAsc, CdSe@ZnS quantum dots, and molecularly imprinted polymer composites modified glass carbon electrode. This sensor, with easy preparation, great selectivity, and excellent sensitivity, successfully detected uric acid in human serum.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Bacterial eradication by a low-energy pulsed electron beam generator

Charlotte Da Silva, Camille Lamarche, Carole Pichereaux, Emmanuelle Mouton-Barbosa, Gauthier Demol, Sebastien Boisne, Etienne Dague, Odile Burlet-Schiltz, Flavien Pillet, Marie-Pierre Rols

Summary: Low-energy electron beams (LEEB) are a safe and practical sterilization solution for industrial applications. To address the limitations of LEEB, we developed a low-energy pulsed electron beam generator (LEPEB) that can effectively and efficiently eradicate bacteria in a wide range of industrial applications.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Polyethylene glycol hydrogel coatings for protection of electroactive bacteria against chemical shocks

Niloufar Fattahi, Jeffrey Reed, Evan Heronemus, Priyasha Fernando, Ryan Hansen, Prathap Parameswaran

Summary: In this study, polyethylene glycol hydrogels were developed as protective coatings for electroactive biofilms, improving their viability under low resource conditions and ammonia-N shocks.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

N-methyl mesoporphyrin IX (NMM) as electrochemical probe for detection of guanine quadruplexes

Daniel Dobrovodsky, Ales Danhel, Daniel Renciuk, Jean-Louis Mergny, Miroslav Fojta

Summary: In this study, N-methyl mesoporphyrin IX (NMM) was utilized as a voltammetric probe for the electrochemical detection of G4s. The detection of NMM was achieved by cyclic voltammetry on a hanging mercury drop electrode (HMDE) with a limit of detection (LOD) of 40 nM. The reduction signal of NMM was found to be significantly higher when G4 oligodeoxynucleotides (G4 ODNs) were present compared to single- or double-stranded ODNs or unfolded ODNs capable of forming G4s. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected for the first time using electrochemical methods. Circular dichroism spectroscopy provided support for the obtained results. This work expands on the utilization of electrochemical probes for DNA secondary structure recognition and offers a proof of principle for the development of novel electroanalytical methods for nucleic acid structure studies.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers

Rimsha B. Jamal, Ulrich Bay Gosewinkel, Elena E. Ferapontova

Summary: Pathogen-triggered infections are a severe global threat to human health. Researchers have developed a fast and inexpensive electrocatalytic aptamer assay for the specific and ultrasensitive detection of E. coli, allowing for timely treatment and prevention. The method is fast, sensitive, and can be used in field and point-of-care applications for analysis of bacteria in the human environment.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum

Fatima-Zahra Ait-Itto, James A. Behan, Mathieu Martinez, Frederic Barriere

Summary: This study investigated the feasibility of using ancient marine sediments as inoculum for bioanode development in microbial fuel cells (MFC). The results showed the presence of two exoelectrogenic bacterial genera in these iron-rich sediments and confirmed that the development of the bioanode derived from the native microbiota. This study has important implications for understanding the role of these bacteria in broader paleoenvironmental phenomena.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Paper-based electrodes as a tool for detecting ligninolytic enzymatic activities

Issa Fall, Bastien Doumeche, Sofiene Abdellaoui, Caroline Remond, Harivony Rakotoarivonina, Marjorie Ochs

Summary: This article presents a novel electrochemical tool based on lignin-coated paper electrodes for the detection and characterization of ligninolytic activity. The suitability of this method has been demonstrated using a catalaseperoxidase isolated from Thermobacillus xylanilyticus.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins

Damien Marchese, Florent Guislain, Tamara Pringels, Laure Bridoux

Summary: Homopolymeric amino acid repeats are common in human proteins, particularly in transcription factors and kinases. This study focuses on homopolymeric histidine repeats (polyH) and their role in regulating embryonic development. Through bioinformatic analysis, the study identifies that polyH-containing proteins interact with cysteine-rich proteins and proteins containing cysteine repeats. The study further investigates the HOXA1 protein, a transcription factor with a long polyH motif, and finds that the polyH motif is necessary for its interaction with cysteine-rich proteins. Additionally, the study discovers that metal ions are required for the HOXA1-MDFI interaction and identifies three polyH interactors that down-regulate the transcriptional activity of HOXA1.

BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS (2024)

Article Biophysics

A wearable and flexible lactic-acid/O2 biofuel cell with an enhanced air-breathing biocathode

Zepeng Kang, Yuanming Wang, Haiyan Song, Xueli Wang, Job Zhang, Zhiguang Zhu

Summary: By designing a wearable and flexible lactic-acid/O2 EBFC with an air-breathing biocathode, the limitations of biocathode are effectively solved. The optimal performance conditions are determined through experiments, and the EBFC is successfully applied to power a low-power device.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives

Lais Canniatti Brazaca, Amanda Hikari Imamura, Rodrigo Vieira Blasques, Jessica Rocha Camargo, Bruno Campos Janegitz, Emanuel Carrilho

Summary: The use of microfluidic paper-based analytical devices (muPADs) for medical diagnosis is a growing trend due to their low cost, easy use, simple manufacturing, and potential for application in low-resource settings. This review focuses on the advances in muPADs for medical diagnostics, discussing their use in detecting various biomarkers in common human biofluids. The challenges of biomarker detection in each sample are examined, along with innovative techniques to overcome these limitations. The commercialization difficulties of muPADs are also considered, along with future trends such as wearable devices and integrated platforms.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Controllable self-assembled DNA nanomachine enable homogeneous rapid electrochemical one-pot assay of lung cancer circulating tumor cells

Chengxin Liu, Xu Shen, Li Yan, Runlian Qu, Yue Wang, Yaqin He, Zixuan Zhan, Piaopiao Chen, Feng Lin

Summary: In this study, a homogeneous rapid electrochemical aptasensor was developed to quantitatively detect CTCs in lung cancer patients. The aptasensor utilized a DNA nanosphere structure and a complementary aptamer to specifically detect mucin 1 as a marker for CTCs. The assay exhibited high specificity and sensitivity, and the results were consistent with other detection methods.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Facile synthesis of dual-ligand europium-metal organic gels for ratiometric electrochemiluminescence detecting I27L gene

Wenjie Dai, Gaoxu Chen, Xiaoyan Wang, Shujun Zhen, Chengzhi Huang, Lei Zhan, Yuanfang Li

Summary: In this study, a novel metal organic gel (MOG) with dual electrochemiluminescence (ECL) properties was prepared by simple mixing. The MOG exhibited strong and stable anodic and cathodic ECL signals. By utilizing this MOG, an ECL resonance energy transfer (ECL-RET) biosensor was constructed for ultrasensitive detection of a specific gene. The study developed a straightforward technique for obtaining a single luminescent material with dual signals and expanded the analytical application of MOGs in the realm of ECL.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Development of a peptide microarray-based metal-enhanced fluorescence assay for ultrasensitive detection of multiple matrix metalloproteinase activities by using a gold nanorod-polymer substrate

Minghong Jian, Xudong Sun, Hua Zhang, Xiaotong Li, Shasha Li, Zhenxin Wang

Summary: Matrix metalloproteinases (MMPs) are attractive biomarkers for cancer diagnosis and treatment, but their low abundance in biological samples, especially in the early stages of tumors, makes it challenging to precisely analyze MMP activities. In this study, a peptide microarray-based metal-enhanced fluorescence assay (PMMEFA) is proposed as a sensitive and specific method to simultaneously detect MMP-1, -2, -3, -7, -9, and -13 activities. The PMMEFA showed excellent sensitivity and was capable of detecting MMP activities in various matrices.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Plasmonic digital PCR for discriminative detection of SARS-CoV-2 variants

Kyung Ho Kim, Eunsu Ryu, Zinah Hilal Khaleel, Sung Eun Seo, Lina Kim, Yong Ho Kim, Hyun Gyu Park, Oh Seok Kwon

Summary: We have developed a novel strategy for discriminative detection of SARS-CoV-2 variants using the plasmonic photothermal effect of gold nanofilms and digital polymerase chain reaction (dPCR) technology. With this method, we were able to detect the delta and omicron variants with high sensitivity within 25 minutes from COVID-19 patients' clinical samples, making it a rapid and accurate point-of-care testing tool.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti3C2TX modified with Ag nanocubes

Danni Xue, Xing Dai, Jialong Zhao, Jiayao Zhang, Huan Liu, Kui Liu, Tao Xu, Chenjie Gu, Xingfei Zhou, Tao Jiang

Summary: In this study, a dual-enhancement SERS substrate based on Ti3C2TX and Ag nanocubes was fabricated for precise quantification of ritonavir and ibrutinib in serum. The formation of numerous electromagnetic hotspots between Ag nanocubes facilitated effective photo-induced charge transfer. The composite substrate showed excellent sensitivity, achieving low detection limits and high recoveries, making it promising for monitoring and identification of clinical blood drug concentration.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

HOF-101-based dual-mode biosensor for photoelectrochemical/ electrochemiluminescence detection and imaging of oxytetracycline

Hongkun Li, Qianqian Cai, Yali Xue, Guifen Jie

Summary: A unique dual-mode biosensor based on hydrogen-bonded organic frameworks (HOF-101) was constructed for ultrasensitive detection and imaging of oxytetracycline (OXY), using polydopamine nanoparticles (PDAs) as quencher. PDAs, with good biocompatibility and light absorption ability, were introduced onto the surface of HOF-101 to quench its electro-chemiluminescence (ECL) and photoelectrochemical (PEC) signals, achieving ultrasensitive detection of OXY.

BIOSENSORS & BIOELECTRONICS (2024)

Article Biophysics

Exosome-tuned MOF signal amplifier boosting tumor exosome phenotyping with high-affinity nanostars

Xiaojie Qin, Binqi Wei, Yuanhang Xiang, Hao Lu, Fengfei Liu, Xinchun Li, Fan Yang

Summary: This study utilizes the coordination between exosomes and metal-organic frameworks to develop an ultrasensitive detection method for tumor-derived exosomes. The method is highly specific and fast, allowing for the profiling of different cancer types and accurate diagnosis in a clinical setting. This strategy provides new opportunities for functional materials assembly and precision diagnostics.

BIOSENSORS & BIOELECTRONICS (2024)