4.8 Article

An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice

Journal

GUT
Volume 63, Issue 5, Pages 727-735

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/gutjnl-2012-303839

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2011-0028854]
  2. Bio RD Program [2008-04090]
  3. National Research Foundation of Korea [K21004000003-12A0500-00310]

Ask authors/readers for more resources

Background Recent evidence indicates that the composition of the gut microbiota contributes to the development of metabolic disorders by affecting the physiology and metabolism of the host. Metformin is one of the most widely prescribed type 2 diabetes (T2D) therapeutic agents. Objective To determine whether the antidiabetic effect of metformin is related to alterations of intestinal microbial composition. Design C57BL/6 mice, fed either a normal-chow diet or a high-fat diet (HFD), were treated with metformin for 6 weeks. The effect of metformin on the composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. Adipose tissue inflammation was examined by flow cytometric analysis of the immune cells present in visceral adipose tissue (VAT). Results Metformin treatment significantly improved the glycaemic profile of HFD-fed mice. HFD-fed mice treated with metformin showed a higher abundance of the mucin-degrading bacterium Akkermansia than HFD-fed control mice. In addition, the number of mucin-producing goblet cells was significantly increased by metformin treatment (p < 0.0001). Oral administration of Akkermansia muciniphila to HFD-fed mice without metformin significantly enhanced glucose tolerance and attenuated adipose tissue inflammation by inducing Foxp3 regulatory T cells (Tregs) in the VAT. Conclusions Modulation of the gut microbiota (by an increase in the Akkermansia spp. population) may contribute to the antidiabetic effects of metformin, thereby providing a new mechanism for the therapeutic effect of metformin in patients with T2D. This suggests that pharmacological manipulation of the gut microbiota in favour of Akkermansia may be a potential treatment for T2D.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available