4.3 Article Retracted Publication

被撤回的出版物: On Understanding and Predicting Groundwater Response Time (Retracted article. See vol. 52, pg. 322, 2014)

Journal

GROUND WATER
Volume 50, Issue 4, Pages 528-540

Publisher

WILEY
DOI: 10.1111/j.1745-6584.2011.00876.x

Keywords

-

Ask authors/readers for more resources

An aquifer system, when perturbed, has a tendency to evolve to a new equilibrium, a process that can take from just a few seconds to possibly millions of years. The time scale on which a system adjusts to a new equilibrium is often referred to as response time or lag time. Because groundwater response time affects the physical and economic viability of various management options in a basin, natural resource managers are increasingly interested in incorporating it into policy. However, the processes of how groundwater responds to land-use change are not well understood, making it difficult to predict the timing of groundwater response to such change. The difficulty in estimating groundwater response time is further compounded because the data needed to quantify this process are not usually readily available. This article synthesizes disparate pieces of information on aquifer response times into a relatively brief but hopefully comprehensive review that the community of water professionals can use to better assess the impact of aquifer response time in future groundwater management investigations. A brief exposition on dimensional/scaling analysis is presented first, followed by an overview of aquifer response time for simplified aquifer systems. The aquifer response time is considered first from a water-quantity viewpoint and later expanded to incorporate groundwater age and water-quality aspects. Monitoring programs today, as well as water policies and regulations, should address this issue of aquifer response time so that more realistic management expectations can be reached.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available