4.8 Article

Physical properties and hydrolytic degradability of polyethylene-like polyacetals and polycarbonates

Journal

GREEN CHEMISTRY
Volume 16, Issue 4, Pages 1816-1827

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3gc42592d

Keywords

-

Funding

  1. Stiftung Baden-Wurttemberg (Kompetenznetz funktionelle Nanostrukturen)

Ask authors/readers for more resources

Long-chain polyacetals and polycarbonates were prepared by polycondensation of alpha,omega-diols (C-18, C-19, C-23) derived from fatty acids as a renewable feedstock with diethoxymethane and dimethyl carbonate, respectively, in one step. Studies of hydrolytic degradation of the solid polymers show a much higher stability compared to their shorter-chain counterparts. Long-chain polyacetals were found to degrade slowly under acidic conditions, while the long-chain polycarbonates also degraded in a basic environment. To rationalize the impact of acetal and carbonate groups on the thermal and crystalline properties of polyacetals and polycarbonates, additional model polymers with a further reduced and systematically varied functional group density were generated by ADMET copolymerization of the unfunctionalized undeca-1,10-diene with bis(undec-10-en-1-yloxy) methane or di(undec-10-en-1-yl) carbonate, respectively, followed by exhaustive hydrogenation. Long-chain polycarbonates possess polyethylene-like solid state structures. By comparison to polyesters, a given density of carbonate groups in the polymer chain reduces melting and crystallization temperatures significantly more strongly. By contrast, long-chain polyacetals possess more complex non-uniform crystal structures, and only adopt a polyethylene-like structure at very low densities of acetal groups. Also, acetal groups more strongly impact melting and crystallization temperatures vs. carbonates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available