4.8 Article

Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu-Al oxide under an inert atmosphere

Journal

GREEN CHEMISTRY
Volume 14, Issue 10, Pages 2780-2789

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2gc35661a

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR) New Delhi

Ask authors/readers for more resources

Among various catalysts screened, the Cu-Al oxide catalyst, prepared by a co-precipitation method, exhibited excellent activity for simultaneous glycerol dehydration and its hydrogenolysis without external hydrogen. Detailed characterization by XRD, XPS, HR-TEM, TPR, etc., showed evidence of Cu2+ in the form of CuO and CuAl2O4, along with Cu-0 and Cu1+ species, which are responsible for their multifunctional roles in glycerol APR, dehydration and hydrogenolysis reactions under inert conditions. This catalyst also presented consistent activity for a duration of 400 h for autogeneous hydrogenolysis of refined glycerol with 36% selectivity to 1,2-propanediol (1,2-PDO). Manipulating the temperature and feed flow rate conditions, meant that the selectivity to acetol and 1,2-PDO could be tailored as desired. Substantial enhancement in 1,2-PDO selectivity (75%) was achieved for an aqueous bio-glycerol feed over the same catalyst for 50 h of testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available