4.8 Article

A green-by-design biocatalytic process for atorvastatin intermediate

Journal

GREEN CHEMISTRY
Volume 12, Issue 1, Pages 81-86

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b919115c

Keywords

-

Ask authors/readers for more resources

The development of a green-by-design, two-step, three-enzyme process for the synthesis of a key intermediate in the manufacture of atorvastatin, the active ingredient of the cholesterol lowering drug Lipitor(R), is described. The first step involves the biocatalytic reduction of ethyl-4-chloroacetoacetate using a ketoreductase (KRED) in combination with glucose and a NADP-dependent glucose dehydrogenase (GDH) for cofactor regeneration. The (S) ethyl-4-chloro-3-hydroxybutyrate product is obtained in 96% isolated yield and >99.5% e. e. In the second step, a halohydrin dehalogenase (HHDH) is employed to catalyse the replacement of the chloro substituent with cyano by reaction with HCN at neutral pH and ambient temperature. The natural enzymes were highly selective but exhibited productivities that were insufficient for large scale application. Consequently, in vitro enzyme evolution using gene shuffling technologies was employed to optimise their performance according to predefined criteria and process parameters. In the case of the HHDH reaction, this afforded a 2500-fold improvement in the volumetric productivity per biocatalyst loading. This enabled the economical and environmentally attractive production of the key hydroxynitrile intermediate. The overall process has an E factor (kg waste per kg product) of 5.8 when process water is not included, and 18 if included.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available