4.2 Article

Development and validation of calibration methods for discrete element modelling

Journal

GRANULAR MATTER
Volume 13, Issue 2, Pages 127-132

Publisher

SPRINGER
DOI: 10.1007/s10035-010-0197-4

Keywords

Discrete element method; Non-spherical; Calibration; Angle of repose; Cohesion

Funding

  1. Technological Resources Pty Ltd (subsidiary of Rio Tinto Ltd)

Ask authors/readers for more resources

Discrete element method (DEM) is proving to be a reliable and increasingly used tool to study and predict the behaviour of granular materials. Numerous particle-scale mechanisms influence the bulk behaviour and flow of bulk materials. It is important that the relevant measurable input parameters for discrete element models be measured by laboratory equipment or determined by physical calibration experiments for rational results. This paper describes some of the bench-scale experiments that have been developed to calibrate the DEM simulations to reflect actual dynamic behaviour. Relevant parameters such as static and rolling coefficients of friction, coefficient of restitution and inter-particle cohesion forces from the presence of liquid bridges have been investigated to model the bulk behaviour of dry and moist granular materials. To validate the DEM models, the results have been checked against experimental slump tests and hopper discharge experiments to quantitatively compare the poured and drained angles of repose and solids mass flow rate. The calibration techniques presented have the capability to be scaled to model and fine tune DEM parameters of granular materials of varying length scales to obtain equivalent static and dynamic behaviour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available