4.5 Article

Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites

Journal

GPS SOLUTIONS
Volume 17, Issue 3, Pages 347-355

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10291-012-0283-7

Keywords

Triple-frequency signals; Precise point positioning; Inter-frequency clock bias

Categories

Funding

  1. National Natural Science Foundation of China (NSFC) [11173049, 41174023]
  2. Shanghai Key Laboratory of Space Navigation and Position Techniques [Y224353002]

Ask authors/readers for more resources

The inter-frequency bias of PRN25 was noticed by the scientific community and considered to be caused by thermal variations. The inter-frequency bias leads to an apparent inter-frequency clock bias (IFCB), which could be obtained using the difference of two ionosphere-free phase combinations (L1/L2 and L1/L5). We present an efficient approach derived from the epoch-differenced strategy for fast estimation of IFCBs for Block IIF satellites. For the analysis, data from 32 stations from the IGS network spanning 10 months (DOY 213, 2011-153, 2012) are processed. The processing times show that the epoch-differenced method is more efficient than the undifferenced one. In order to study the features of IFCB, a harmonic analysis is performed by using a FFT (fast Fourier transformation), and significant periodic variations with the periods of 12, 6 and 8 h are noticed. The fourth-order period is determined by comparing the performances of the model with different periods. After determination, a harmonics-based function of order 4 is used to model the IFCB, and the single-day amplitudes and phases are estimated for the 10 months from a least squares fit. Based on the estimated results, the characterization of IFCB is discussed. The algorithm is incorporated into the MGPSS software developed at SHAO (Shanghai Astronomical Observatory, Chinese Academy of Sciences) and used to monitor the IFCB variations of GPS and COMPASS systems in near real time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available