4.7 Article

Role of lithosphere in intra-continental deformation: Central Australia

Journal

GONDWANA RESEARCH
Volume 24, Issue 3-4, Pages 958-968

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gr.2012.10.010

Keywords

Central Australia; Lithosphere; Deformation; Strength

Ask authors/readers for more resources

Since the Proterozoic, there has been a set of deformation cycles in central Australia culminating in the Alice Springs Orogeny around 400 Ma. These events occurred away from plate boundaries and involved extension as well as compression, although their precise history remains difficult to unravel from the geologic record. Much evidence of deformation is left in the central Australian crust, which features significant Moho topography and an associated gravity signal. In the past, several mechanical models invoked crustal thickening and considerable compression to explain these geophysical characteristics. However, it is hard to envisage extensive deformation affecting the crust alone, but leaving no deformation record in the sub-crustal lithosphere. In recent seismic tomography studies, there is continuous seismically-fast lithosphere in central Australia below depths of about 100 km. In this region, the uppermost lithospheric mantle is seismically slow, but exhibits no significant attenuation of seismic waves. These new constraints make simple crustal thickening unlikely to be the main mechanism to generate variations of the Moho depth in central Australia. Here we propose a mechanical model of deformation that involves the entire lithosphere. We make no strong assumptions about the history of deformation cycles. Our model does not require lithospheric thickening at any stage of the deformation cycle, and results in a present-day scenario compatible with shallow as well as deep constraints on the lithosphere structure. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available