4.2 Article

Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts

Journal

GLYCOCONJUGATE JOURNAL
Volume 27, Issue 1, Pages 79-87

Publisher

SPRINGER
DOI: 10.1007/s10719-009-9271-8

Keywords

Glycochip; Microarray; Oligosaccharides; Plant cell wall; Transglycosylation; XET

Funding

  1. European Commission [MRTN-CT-2004-512265]
  2. WallNet
  3. Scientific Grant Agency VEGA, Slovakia [2/0011/09]
  4. UK BBSRC

Ask authors/readers for more resources

Polysaccharide transglycosylases catalyze disproportionation of polysaccharide molecules by cleaving glycosidic linkages in polysaccharide chains and transferring their cleaved portions to hydroxyl groups at the non-reducing ends of other polysaccharide or oligosaccharide molecules. In plant cell walls, transglycosylases have a potential to catalyze both cross-linking of polysaccharide molecules and grafting of newly arriving polysaccharide molecules into the cell wall structure during cell growth. Here we describe a polysaccharide microarray in form of a glycochip permitting simultaneous high-throughput monitoring of multiple transglycosylase activities in plant extracts. The glycochip, containing donor polysaccharides printed onto nitrocellulose-coated glass slides, was incubated with crude plant extracts, along with a series of fluorophore-labelled acceptor oligosaccharides. After removing unused labelled oligosaccharides by washing, fluorescence retained on the glycochip as a result of transglycosylase reaction was detected with a standard microarray scanner. The glycochip assay was used to detect transglycosylase activities in crude extracts from nasturtium (Tropaeolum majus) and mouse-ear cress (Arabidopsis thaliana). A number of previously unknown saccharide donor-acceptor pairs active in transglycosylation reactions that lead to the formation of homo- and hetero-glycosidic conjugates, were detected. Our data provide experimental support for the existence of diverse transglycosylase activities in crude plant extracts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available