4.4 Article

Establishment of a real-time analytical method for free oligosaccharide transport from the ER to the cytosol

Journal

GLYCOBIOLOGY
Volume 19, Issue 9, Pages 987-994

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwp075

Keywords

endoplasmic reticulum; free oligosaccharide; N-glycan catabolism; transporter

Funding

  1. Global COE (Center of Excellence) Program
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan

Ask authors/readers for more resources

During N-glycosylation of proteins, significant amounts of free unconjugated glycans are also generated in the lumen of the endoplasmic reticulum (ER). These ER-derived free glycans are translocated into the cytosol by a putative transporter on the ER membrane for further processing. However, the molecular nature of the transporter remains to be determined. Here, we report the establishment of a novel assay method for free oligosaccharide transport from the ER lumen using chemically synthesized fluorescence-labeled N-glycan derivatives. In this method, fluorescence-labeled glycan substrates were encapsulated inside mouse liver microsomes, followed by incubation with the cytosol and a fluorescence-quenching agent (anti-fluorophore antibody). The rate of substrate efflux was then monitored in real time by the decrease in the fluorescence intensity. The present data clearly demonstrated that the oligosaccharide transport activity under the current assay conditions was both ATP and cytosol dependent. The transporter activity was also found to be glycan structure specific because free glucosylated glycans were unable to be transported out of the microsomes. This new assay method will be a useful tool for identifying the transporter protein on the ER membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available