4.4 Article

Structural analysis of chondroitin sulfate from Scyliorhinus canicula: A useful source of this polysaccharide

Journal

GLYCOBIOLOGY
Volume 19, Issue 12, Pages 1485-1491

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwp123

Keywords

2D-NMR; chondroitin sulfate; lesser spotted dogfish; linkage region; RPIP-HPLC

Ask authors/readers for more resources

Chondroitin sulfate (CS), a constituent of proteoglycans, is a key component of the connective tissues and it is widely used as a precautionary drug for joint diseases; for this reason, the increased demand of this polysaccharide has posed the problem to identify new and secure sources of this product. In this context, CS from the cartilage of the lesser spotted dogfish (Scyliorhinus canicula, a cartilaginous fish) was isolated and investigated through chemical and spectroscopical techniques. The structural elucidation was performed on the entire polysaccharide and confirmed analyzing the products obtained via ABC lyase treatment. As a result, its compositional analysis disclosed the occurrence of CS-A, CS-C, CS-D, and CS-0S motifs in the ratio of 41, 32, 19.8, and 8.2%, respectively. Additionally, two different glycopeptides were isolated and characterized via NMR, providing information on the linkage oligosaccharide region joining the glycosaminoglycan chain to the core protein. Therefore, chondroitin sulfate from Scyliorhinus canicula appears very similar to that isolated from shark, a cartilaginous and taxonomically related fish, with the main difference residing in the major percentage of the CS-A motif. In the light of the results obtained, Scyliorhinus canicula chondroitin sulfate possesses a chemical structure compatible for the formulation of commercial and pharmaceutical products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available