4.4 Article

Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): A gene-dependent effect on the cell surface glycan profile

Journal

GLYCOBIOLOGY
Volume 19, Issue 7, Pages 726-734

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwp040

Keywords

carcinogenesis; glycosylation; lectins; malignancy; microsatellite

Funding

  1. The Marie Curie Research Training Network [CT-2005- 019561]
  2. Deutsche Forschungsgemeinschaft (DFG) [KO 1663/5-1]

Ask authors/readers for more resources

Tumors that display a high level of microsatellite instability (MSI-H) accumulate somatic frameshift mutations in several genes. The compensation of this loss of function by transfection represents a suitable approach to tie respective gene deficiency to alterations in cellular characteristics. In view of the emerging significance of cell surface glycans as biochemical signals for presentation/activity of various receptors/integrins and for susceptibility to adhesion/growth-regulatory tissue lectins, we examined the glycophenotype in the MSI-H colon cancer cell line HCT116 for activin type 2 receptor (ACVR2), absent in melanoma 2 (AIM2), and transforming growth factor beta-type 2 receptor (TGFBR2) known to be associated with MSI colorectal carcinogenesis. A panel of probes specific for functional carbohydrate epitopes including human lectins was used to trace changes in cell surface levels, thereby initiating glycan analysis related to MSI. In particular, the presence of core substitutions and branching in N-glycans, the sialylation status of N- and O-glycans, and the presence of Le(a/x)-epitopes were profiled. Transient transfection affected the glycophenotype, depending on the nature of the gene and the probe. The TGFBR2 presence reduced binding of probes specific for a core substitution and increased branch length in N-glycosylation, even reaching a P-value of 0.0016. ACVR2/AIM2 influenced core 1 mucin-type O-glycosylation differentially, upregulation by ACVR2, and downregulation by AIM2. These alterations of cell surface glycosylation by gene products that are not directly associated with the machinery for glycan generation direct attention to pursue analysis of glycosylation in MSI tumor cells on the level of target glycoproteins and open the way for functional studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available