4.7 Article

Climate-driven global changes in carbon use efficiency

Journal

GLOBAL ECOLOGY AND BIOGEOGRAPHY
Volume 23, Issue 2, Pages 144-155

Publisher

WILEY
DOI: 10.1111/geb.12086

Keywords

Climate; GPP; global scale; NPP; GPP ratio; NPP; temporal dynamics

Funding

  1. Ministry of Science and Technology of China [2013CB956302]
  2. Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences [2012ZD005]
  3. Chinese Academy of Sciences

Ask authors/readers for more resources

AimCarbon use efficiency [net primary production (NPP)/gross primary production (GPP) ratio] is a parameter related to the allocation of photosynthesized products by plants and is commonly used in many biogeochemical cycling models. But how this parameter changes with climates is still unknown. Faced by an aggravated global warming, there is a heightened necessity in unravelling the dependence of the NPP/GPP ratio on climates. The objective of this study was to examine how ongoing climate change is regulating global patterns of change in the NPP/GPP ratio. The study finding would elucidate whether the global vegetation ecosystem is becoming more or less efficient in terms of carbon storage under climatic fluctuation. LocationThe global planetary ecosystem. MethodsThe annual NPP/GPP ratio of the global terrestrial ecosystem was calculated over a 10-year period based on Moderate Resolution Imaging Spectroradiometer data and an ecosystem productivity model. The temporal dynamics of the global NPP/GPP ratio and their dependence on climate were investigated. ResultsThe global NPP/GPP ratio exhibited a decreasing trend from 2000 to 2009 due to decreasing NPP and stable GPP over this period. The temporal dynamics of the NPP/GPP ratio were strongly controlled by temperature and precipitation. Increased temperature lowered the NPP/GPP ratio, and increased precipitation led to a higher NPP/GPP ratio. ConclusionsThe NPP/GPP ratio exhibits a clear temporal pattern associated with climatic fluctuations at a global scale. The associations of the NPP/GPP ratio with climatic variability challenge the conventional assumption that the NPP/GPP ratio should be consistent independent of environmental conditions. More importantly, the findings of this study have fundamental significance for our understanding of ongoing global climatic change. In regions and time periods experiencing drought or increased temperatures, plant ecosystems would suffer a higher ecosystem respiration cost and their net productivity would shrink.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available