4.8 Article

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data

Journal

GLOBAL CHANGE BIOLOGY
Volume 20, Issue 2, Pages 641-652

Publisher

WILEY
DOI: 10.1111/gcb.12417

Keywords

Alaska; boreal forest; C decomposition; climate change; Siberia; soil organic carbon; tundra

Funding

  1. NSF Bonanza Creek LTER
  2. NSF CAREER Program
  3. Department of Energy NICCR
  4. Department of Energy TES
  5. U.S. National Parks
  6. Inventory Monitoring Program
  7. Danish National Research Foundation [CENPERM DNRF100]
  8. European Union FP7-ENVIRONMENT project PAGE21
  9. National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network [955713]
  10. Direct For Biological Sciences
  11. Emerging Frontiers [1065587] Funding Source: National Science Foundation
  12. Directorate For Geosciences
  13. Office of Polar Programs (OPP) [1107707] Funding Source: National Science Foundation
  14. Division Of Environmental Biology
  15. Direct For Biological Sciences [0955713] Funding Source: National Science Foundation
  16. Division Of Environmental Biology
  17. Direct For Biological Sciences [0955341, 1026415] Funding Source: National Science Foundation

Ask authors/readers for more resources

High-latitude ecosystems store approximately 1700Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 degrees C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C:N. Turnover time at 5 degrees C of fast cycling C typically was below 1year, between 5 and 15years for slow turning over C, and more than 500years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 degrees C, with vulnerability to loss increasing in soils with higher C:N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C:N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available