4.8 Article

Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration

Journal

GLOBAL CHANGE BIOLOGY
Volume 16, Issue 1, Pages 331-343

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2486.2009.01933.x

Keywords

carbon sequestration; fire management; net primary productivity; northern Australia; tree demography; tree growth; tropical savanna

Funding

  1. Parks Australia
  2. Northern Territory Parks and Wildlife Service

Ask authors/readers for more resources

Tropical savannas are typically highly productive yet fire-prone ecosystems, and it has been suggested that reducing fire frequency in savannas could substantially increase the size of the global carbon sink. However, the long-term demographic consequences of modifying fire regimes in savannas are difficult to predict, with the effects of fire on many parameters, such as tree growth rates, poorly understood. Over 10 years, we examined the effects of fire frequency on the growth rates (annual increment of diameter at breast height) of 3075 tagged trees, at 137 locations throughout the mesic savannas of Kakadu, Nitmiluk and Litchfield National Parks, in northern Australia. Frequent fires substantially reduced tree growth rates, with the magnitude of the effect markedly increasing with fire severity. The highest observed frequencies of mild, moderate and severe fires (1.0, 0.8 and 0.4 fires yr(-1), respectively) reduced tree growth by 24%, 40% and 66% respectively, relative to unburnt areas. These reductions in tree growth imply reductions in the net primary productivity of trees by between 0.19 t C ha(-1) yr(-1), in the case of mild fires, and 0.51 t C ha(-1) yr(-1), in the case of severe fires. Such reductions are relatively large, given that net biome productivity (carbon sequestration potential) of these savannas is estimated to be just 1-2 t C ha(-1) yr(-1). Our results suggest that current models of savanna tree demography, that do not account for a relationship between severe fire frequency and tree growth rate, are likely to underestimate the long-term negative effects of frequent severe fires on tree populations. Additionally, the negative impact of frequent severe fires on carbon sequestration rates may have been underestimated; reducing fire frequencies in savannas may increase carbon sequestration to a greater extent than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available