4.8 Article

Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality

Journal

GLOBAL CHANGE BIOLOGY
Volume 16, Issue 12, Pages 3284-3296

Publisher

WILEY
DOI: 10.1111/j.1365-2486.2009.02153.x

Keywords

aquatic detritivore; global change; litter quality; Sericostoma vittatum; water temperature

Funding

  1. Portuguese Foundation for Science and Technology (FCT) [POCTI2010/SFRH/BPD/34368/2006, SFRH/BD/47089/2008]
  2. IMAR
  3. FCT [PTDC/CLI/67180/2006]
  4. SRIF
  5. Forestry Commission Wales
  6. CIRRE
  7. Fundação para a Ciência e a Tecnologia [PTDC/CLI/67180/2006] Funding Source: FCT

Ask authors/readers for more resources

Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 degrees C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 degrees C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 degrees C when compared with individuals fed elevated litter at 15 degrees C. Mortality did not differ between litter types, but was higher at 15 degrees C than at 10 degrees C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available