4.8 Article

Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings

Journal

GLOBAL CHANGE BIOLOGY
Volume 14, Issue 6, Pages 1282-1293

Publisher

WILEY
DOI: 10.1111/j.1365-2486.2008.01577.x

Keywords

cold tolerance; decline; foliage; freezing injury; roots; soil temperature; yellow-cedar

Ask authors/readers for more resources

It has been hypothesized that yellow-cedar [Chamaecyparis nootkatensis (D. Don) Spach] decline may result from root freezing injury following climate change-induced reductions in protective snow cover. To test this hypothesis, we measured the freezing tolerance and injury expression of yellow-cedar seedlings in three treatments that differed in the insulative protection they provided to soils during winter and spring: (1) full exposure to ambient temperatures (exposed treatment), (2) continuous protection from ambient temperatures via addition of perlite over pots (full protection), and (3) perlite protection only during winter and exposure to ambient temperatures during spring (partial protection). Foliage from all treatments was cold tolerant enough to prevent foliar freezing injury throughout the study period. However, on all sample dates, roots of seedlings from all treatments were only tolerant to about -5 degrees C - a level considerably warmer than the reported maximum cold tolerance for the species and well above the soil temperature recorded in the exposed treatment. As a result of this limited root cold tolerance, visibly uninjured roots of seedlings from the exposed treatment had significantly higher relative electrolyte leakage (REL) throughout the winter and early spring than seedlings in soil protection treatments. Seedlings from the exposed treatment also had significantly higher foliar REL values and greater visual foliar injury than seedlings from the other treatments starting in early spring. For both roots and foliage, REL measurements consistently detected tissue damage before visual injury was evident. Patterns of injury from both REL and visual injury assessments showed the same pattern: damage began with freezing injury to roots and subsequently became evident as foliar browning after spring temperatures increased. All seedlings in the exposed treatment eventually had 100% fine root damage and died. This progression of initial root damage followed by foliar browning and mortality after the onset of warming conditions is consistent with reports of yellow-cedar decline symptom development in the field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available