4.7 Article

Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent

Journal

GLOBAL BIOGEOCHEMICAL CYCLES
Volume 24, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GB003693

Keywords

-

Funding

  1. National Science Foundation [NSF-OCE-0425721]
  2. JISAO under National Oceanic and Atmospheric Administration (NOAA) [NA17RJ1232]
  3. NERC [bas0100028] Funding Source: UKRI
  4. Natural Environment Research Council [bas0100028] Funding Source: researchfish

Ask authors/readers for more resources

We present results from the first zonal transect of iron, aluminum, and manganese conducted from the western source region of the Equatorial Undercurrent (EUC) to the central equatorial Pacific. Trace metals were elevated along the slope of Papua New Guinea and within the New Guinea Coastal Undercurrent (NGCU), which is the primary Southern Hemisphere entry path of water to the EUC. Subsurface maxima in total acid-soluble iron, aluminum, and manganese were evident in the EUC. These maxima were generally greatest in the western equatorial Pacific and decreased in magnitude eastward. Maxima in iron and aluminum persisted to 140 degrees W; maxima in manganese extended to 175 degrees W. Iron and manganese maxima were deeper (25-75 m) than aluminum maxima and located in the lower EUC, which undergoes less interior ocean mixing than shallower waters. The depth of the aluminum subsurface maxima correlated strongly (r = 0.88) with the depth of the EUC velocity maximum. Surface waters were enriched in aluminum and manganese offshore of Papua New Guinea. Surface metal concentrations decreased eastward throughout the western warm pool up to the longitude (similar to 180 degrees W) of the salinity front. Detrital sediment input from either direct riverine input or sediment resuspension appeared to be the primary mechanism of supplying metals to the NGCU. We estimated eastward fluxes of metals in the EUC and found greatest fluxes in the western equatorial Pacific between 160 E and 165 degrees E, except for aluminum. Fluxes of aluminum and, to a lesser extent, manganese increased concurrently with water volume transport in the central equatorial Pacific. Iron transport in the EUC remained constant east of the dateline, apparently due to the combined effects of dilution by meridional entrainment and scavenging. Iron was mobilized in a highly active western boundary current region and transported eastward in the lower EUC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available