4.7 Article

Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change

Journal

GLOBAL BIOGEOCHEMICAL CYCLES
Volume 23, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GB003474

Keywords

-

Funding

  1. U.S. National Aeronautics and Space Administration Land Cover and Land Use Change Program [NNX08AK75G]
  2. Office of Science, U.S. Department of Energy [DOE DE-FG02-06ER64195]
  3. Energy Biosciences Institute, University of Illinois
  4. NASA [98447, NNX08AK75G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organic N storage are in tundra (1.24 Kg N m(-2)) and desert soil (0.06 Kg N m(-2)). The vegetation N storage is highest in tropical forests (0.5 Kg N m(-2)), and lowest in tundra and desert (<0.03 Kg N m(-2)). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM framework can predict plant N availability and subsequent plant productivity at regional and global scales and furthermore how they can be affected by factors that alter the rate of decomposition, such as increasing atmospheric [CO2], climate changes, litter quality, soil microbial activity and/or increased N.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available